GPLUS EDUCATION

	re : ne : rks :			CHEMISTRY	
ELECTROCHEMISTRY					
		Single Correct	Answer Type		
1.	The desired amount of cl	narge for obtaining one mo	ole of Al from Al ³⁺ is		
	a) 96500 C	b) 2 × 96500 C	c) 3 × 96500 C	d) $\frac{96500}{2}$ C	
2.	same current flowing for	es 0.504 g of hydrogen in the same time in $CuSO_4$ so	lution?	opper can be liberated by the	
	a) 12.7	b) 16	c) 31.8	d) 63.5	
3.	relationships for the valu	e of ΔG° and K_{eq} ?		following gives the correct	
	-	•	c) $\Delta G^{\circ} < 0$; $K_{\text{eq}} > 1$	d) $\Delta G^{\circ} < 0$; $K_{eq} < 1$	
4.	The Edison storage cell is	-			
		(1) Ni ₂ O ₃ (s) Ni ₂ O ₃ (s)		0.40.11	
			$2\text{NiO}(s) + 20\text{H}^-; E^\circ = +$	0.40 V	
	Choose the incorrect stat	$\Rightarrow Fe(s) + 2OH^-; E^\circ = -0$	J.8 / V		
		increase in concentration	of OH-		
		h increase in concentratio			
	c) $E_{\text{cell}}^{\circ} = 1.27 \text{ V}$	moreuse m comcenti utio			
		crease in concentration of	FeO		
5.		ntials of the half reactions			
	$F_2(g) + 2e^- \rightarrow 2F^-(aq)$		o -		
	$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$				
	$Br_2(l) + 2e^- \rightarrow 2Br^-(ae^-)$				
	$I_2(s) + 2e^- \rightarrow 2I^-(aq);$				
		nd reducing agents respec			
	a) F ₂ and I ⁻	b) Br ₂ and Cl ⁻		, , ,	
6.				are -0.44 V and -0.14 V	
			$e + Sn^{2+}$, the standard e.m		
7	a) + 0.30 V	b) 0.58 V	c) + 0.58 V	d) – 0.30 V	
7.	•	<i>r</i> ed in water dissociates in	to ions because		
	a) They are unstableb) The water dissolves it				
	c) The force of repulsion	increases			
	•	tic attraction are broken o	lown hy water		
8.	Which ion has exceptiona		io in a sy mater		
	a) H ⁺	b) K ⁺	c) NH ₂	d) OH	
9.	•	nductivities of a uni-uni	, <u>-</u>	and 73. The limiting molar	
	a) $130 S \text{ cm}^2 \text{ mol}^{-1}$	b) $65 S \text{ cm}^2 \text{ mol}^{-1}$	c) $260 S \text{ cm}^2 \text{ mol}^{-1}$	d) $187 S \text{ cm}^2 \text{ mol}^{-1}$	
10.	Molten NaCl conducts ele				
	a) Free electrons	b) Free molecules	c) Free ions	d) Atoms of Na and Cl	

- 11. The emf of the cell, $(E_{\text{Zn}^{2+}/\text{Zn}} = -0.76 \text{ V})$
 - $Zn / Zn^{2+} (1 M) || Cu^{2+} (1 M) | Cu$
 - $(E_{\text{Cu}^{2+}/\text{Cu}} = +0.34 \text{ V})$ will be
 - a) +1.10 V
- b) -1.10 V
- c) +0.42 V
- d) -0.42 V

- 12. Which represents a concentration cell?
 - a) PtH₂|HCl|| HCl |PtH₂
- b) PtH₂|HCl||Cl₂|Pt
- c) Zn|Zn²⁺||Cu²⁺|Cu
- d) Fe|Fe²⁺||Cu²⁺|Cu
- 13. In electrolysis of aqueous copper sulphate, the gas at anode and cathode are
 - a) O_2 and H_2
- b) H_2 and O_2
- c) SO₂ and H₂
- d) SO_3 and O_2
- 14. Consider the reaction, $M^{n+}(aq) + ne \rightarrow M^{0}(s)$. The standard reduction potential values of the metals M_1 , M_2 and M_3 are -0.34 V, -3.05 V and -1.66 V respectively. The order of their reducing power will be :
 - a) $M_1 > M_2 > M_3$
- b) $M_3 > M_2 > M_1$
- c) $M_1 > M_3 > M_2$
- d) $M_2 > M_3 > M_1$
- 15. The charge required to liberate one gram equivalent of an element is
 - a) 96500 F
- b) 1 F

c) 1 C

- d) None of these
- 16. What will be pH of aqueous solution of electrolyte in electrolytic cell during electrolysis of $CuSO_4(aq)$ between graphite electrodes?
 - a) pH = 14.0
- b) pH > 7.0
- c) pH < 7.0
- d) pH = 7.0
- 17. In an electrolytic cell, the anode and cathode are respectively represented as:
 - a) Positive electrode, negative electrode
 - b) Negative electrode, positive electrode
 - c) Both positive and negative electrode
 - d) None of the above
- 18. The cell reaction is spontaneous, when
 - a) $E_{\rm red}^{\circ}$ is negative b) $E_{\rm red}^{\circ}$ is positive
- c) ΔG° is negative d) ΔG° is positive
- 19. The emf of the cell Mg| Mg²⁺(0.01 M)|| Sn²⁺(0.1 M)|Sn at 298 K is (Given, $E_{Mg^{2+},Mg}^{\circ} =$ $-2.34 \text{ V}, -2.34 \text{ V}, E_{\text{Sn}^{2+},\text{Sn}}^{\circ} = -0.14 \text{ V})$
- b) 1.86 V

- 20. When an aqueous solution of lithium chloride is electrolysed using graphite electrodes:
 - a) pH of the resulting solution increases
 - b) pH of the resulting solution decreases
 - c) As the current flows, pH of the solution around the cathode increases
 - d) None of the above
- 21. In electrolytic purification, which of the following is made of impure metal?
 - a) Anode
- b) Cathode
- c) Both (a) and (b)
- d) None of these
- 22. The specific conductivity of 0.1 N KCl solution is $0.0129 \Omega^{-1} \text{cm}^{-1}$. The resistance of the solution in the cell 100 Ω . The cell constant of the cell will be
 - a) 1.10

b) 1.29

c) 0.56

- d) 2.80
- 23. Which graph correctly correlates E_{Cell} as a function of concentrations for the cell (for different values of Mand M')?
 - $\operatorname{Zn}(s) + \operatorname{Cu}^{2+}(M) \longrightarrow \operatorname{Zn}^{2+}(M') + \operatorname{Cu}(s);$
 - $E^{\circ}_{Cell} = 1.10 V$
 - $X \text{axis} : \log_{10} \frac{[\text{Zn}^{2+}]}{[\text{Cu}^{2+}]}, Y \text{axis} : E_{\text{Cell}}$

24. In acidic medium MnO_4^- is converted to Mn^{2+} . The quantity of electricity in faraday required to reduce 0.5

			Opius Luucution
	mole of MnO ₄ to Mn ²⁺ would be	2.4	D 0 5
25	a) 2.5 b) 5	c) 1	d) 0.5
25.	In electrolysis, oxidation takes place at:		
	a) Anode		
	b) Cathode c) The anade as well as gathede		
	c) The anode as well as cathoded) The surface of electrolyte solution		
26	A depolariser used in dry cell batteries is:		
20.	a) Ammonium chloride b) Manganese dioxide	c) Potaccium hydrovid	a d) Sadium phasphata
27.	The $E^{\circ}_{M^{3+}/M^{2+}}$ values for Cr, Mn, Fe and Co are -0 .		
	one of these metals, the change in oxidation state for		
	a) Fe b) Mn	c) Co	d) Cr
28.	The standard reduction electrode potential values	of the elements A, B and	C are $+ 0.68$, -2.50 and $- 0.50$
	V respectively. The order of their reducing power i		
	a) $A > B > C$ b) $A > C > B$	c) $C > B > A$	d) $B > C > A$
29.	The number of electrons involved in the reaction	on when a faraday of ele	ectricity is passed through an
	electrolyte in solution is:	-	
	a) 12×10^{46} b) 96500	c) 8×10^{16}	d) 6.02×10^{23}
30.	The electrolysis of a solution resulted in the format	tion of H ₂ at the cathode a	and ${ m Cl_2}$ at the anode. The liquid
	is:	-	-
	a) Pure water		
	b) H ₂ SO ₄ solution		
	c) NaCl solution in water	>	
	d) CuCl ₂ solution in water	_	
31.	The passage of electricity in the Daniell cell when Z	n and Cu electrodes are c	onnected:
	a) From Cu to Zn inside the cell		
	b) From Cu to Zn outside the cell		
	c) From Zn to Cu outside the cell	CATION	
	d) None of the above	0/11/011	
32.	Ni / Ni $^{2+}$ [1.0 M] Au $^{3+}$ [1.0 M] / Au where E°		
	for Ni ²⁺ /Ni is $-$ 0.250 V; and E° for		
	$\mathrm{Au^{3+}}$ / Au is 0.150 V. The emf of the cell is		
	a) +1.25 V b) -1.75 V	c) +1.75 V	d) + 0.4 V
33.	The product obtained at anode when $50\%~H_2SO_4$ a	queous solution is electro	olysed using platinum
	electrodes is		
	a) H_2SO_3 b) $H_2S_2O_8$	c) O ₂	d) H ₂
34.	The approximate e.m.f. of a dry cell is:		
	a) 2.0 V b) 1.2 V	c) 6 V	d) 1.5 V
35.	E_1 , E_2 , and E_3 are the emfs of the following three ga	lvanic cells respectively	
	I. $\operatorname{Zn}(s) Zn^{2+}(0.1 \text{ M}) \operatorname{Cu}^{2+}(1 \text{ M}) \operatorname{Cu}(s)$		
	II. $\operatorname{Zn}(s) Zn^{2+} (1 \text{ M}) \operatorname{Cu}^{2+} (1 \text{ M}) \operatorname{Cu}(s)$		
	III. $\operatorname{Zn}(s) Zn^{2+} (1 \text{ M}) \operatorname{Cu}^{2+} (0.1 \text{ M}) \operatorname{Cu}(s)$		
	Which one of the following is true?		
	a) $E_2 > E_1 > E_3$ b) $E_1 > E_2 > E_3$	c) $E_3 > E_1 > E_2$	d) $E_3 > E_2 > E_1$
36.	The fraction of the total current carried by an ion is	s known as:	
	a) Transport number of that ion		
	b) Conductance of that ion		
	c) Both(a) and (b)		
	d) None of the above		
37.	In a galvanic cell, which is wrong?		

				Gplus Education
	a) Anode has negative pol	arity		
	b) Cathode has positive po	olarity		
	c) Reduction takes place a	at anode		
	d) Reduction takes place a			
38.	The rusting of iron takes p			
	$2H^{+} + 2e^{-} + \frac{1}{2}O_{2} \rightarrow$	$H_2 O(l);$		
	$E^{\circ} = +1.23 V$			
	$Fe^{2+} + 2e^{-} \rightarrow Fe(s);$	$E^{\circ} = -0.44 V$		
	Calculate ΔG° for the net p			
	-		c) -152 kJ mol ⁻¹	d) -76 kI mol ⁻¹
39	•		•	through a solution of Cu(II)
07.	salt?	in be deposited by passing	is 2 laraday of electricity t	in ough a solution of outiny
	a) 35.6 g	b) 63.5 g	c) 6.35 g	d) 3.56 g
40	Chlorine cannot displace :	_	c) 0.33 g	u) 3.30 g
40.	a) Fluorine from NaF		c) Bromine from NaBr	d) None of these
11		•		
41.		istant of the reaction at 25	he standard emf of the cell	is found to be 0.295 v at
	a) 1×10^{-10}			d) 1×10^{10}
40	•	b) 29.5×10^{-2}	c) 10	
42.				en two platinum electrodes
			be 32 onm. The specific a	and equivalent conductivity
	respectively in their proper			D.M. Gal
	a) 104.1 and 0.0104		c) 0.0104 and 104.0	d) None of these
43.	The value of equilibrium of			12
	a) < 1	b) Zero	c) = 1	d) > 1
44.			involving a two electron ch	ange is found to be 0.295 V.
	The equilibrium constant			10
	a) 29.5×10^{-2}	b) 10	c) 10 ¹⁰	d) 29.5×10^{10}
45.	E° for Fe ²⁺ + 2e ⁻ \rightarrow Fe	is -0.44 V and E for	25.417.01.4	
	$Zn^{2+} + 2e^- \rightarrow Zn \text{ is } -0.7$	76 V thus		
	a) Zn is more electroposit		b) Zn is more electronega	
	c) Fe is more electroposit	ive than Zn	d) None of the above	
46.	A certain quantity of elec	ctricity is passed through	aqueous solution of AgNO	O_3 and $CuSO_4$ connected in
	series. If Ag (at.wt.108) de	eposited at the cathode is 1	1.08 g then Cu deposited at	the cathode is (at. wt. of Cu
	is 63.53):			
	a) 6.354 g	b) 0.317 g	c) 0.6354 g	d) 3.177 g
47.	$I_2(s) I^-(0.1 \text{ M}) \text{ half-cell is}$	s connected to a $H^+(aq)$	$ m H_2(1~bar)$ Pt half-cell and e	mf is found to be 0.7714 V.
	If $E_{I_2/I^-}^{\circ} = 0.535$ V, find th	e pH of H ⁺ /H ₂ half-cell		
	a) 1	b) 2	c) 3	d) 5
48.		•	V, +1.57 V, +0.77 V and +1	•
	,			
		=	tate from $+2$ to $+3$ is easies	
40	a) Cr	b) Mn	c) Fe	d) Co
49.	In which cell, liquid functi	_	minated?	
	a) $Pt/H_{2(P_1)} HCl Pt/H_2(P_2)$	2)		
	b) Pt/H_2 $ HCI HCI Pt/H_2$			
	c) Nicad cell			
	d) Lead storage battery			
50.	-	g nitrates will leave behind	d Ametal on strong heating	?
_ ~ .	a) Ferric nitrate	b) Copper nitrate	c) Manganese nitrate	d) Silver nitrate
	,	-, 20ppor meraco	-,	,

			Gpius Education
51.	$E_{Cu}^{\circ} = 0.34 V$, $E_{Zn}^{\circ} = 0.76 V$. ADaniel cell contain	s 0.1 M ZnSO ₄ solution and	0.01 M CuSO ₄ solution at its
	electrodes. EMF of the cell is		
	a) 1.10 V b) 1.04 V	c) 1.16 V	d) 1.07 V
52.	The E° of Fe ²⁺ / Fe and Sn ²⁺ /Sn are -0.44 V and	-0.14 V respectively. If cell r	eaction is
	$Fe + Sn^{2+} \rightarrow Fe^{2+} + Sn$		
	then emf of the cell is		
	a) +0.30 V b) -0.58 V	c) +0.58 V	d) -0.30 V
53.	Electrolysis rules of Faraday's states that mass de		oortional to
	a) Q b) Q^2	c) <i>I</i> ²	d) None of these
54.	A silver cup is plated with silver by passing 965 C	of electricity. The amount o	f Ag deposited is
	a) 107.89 g b) 9.89 g	c) 1.0002 g	d) 1.08 g
55.	The molecular conductivity and equivalent conductivity	ctivity are same for the solu	tion of:
	a) 1 M NaCl b) 1 M Ba(NO ₃) ₂	c) $1 M La(NO_3)_3$	d) 1 <i>M</i> Th(NO ₃) ₄
56.	Dipping iron article into a strongly alkaline solution	on of sodium phosphate	
	a) Does not affect the article	b) Forms Fe_2O_3 . xH_2O o	on the surface
	c) Forms iron phosphate film	d) Forms ferric hydroxi	de
57.	When an electric current is passed through an aqu	eous solution of sodium ch	loride :
	a) H ₂ is evolved at the anode		
	b) Oxygen is evolved at the cathode		
	c) Its pH progressively decreases		
	d) Its pH progressively increases		
58.	The cell reaction of the galvanic cell		
	$Cu(s) Cu^{2+}(aq) Hg^{2+}(aq) Hg(l) is$		
	a) $Hg + Cu^{2+} \rightarrow Hg^{2+} + Cu$	b) Hg + $Cu^{2+} \rightarrow Cu^{+}$	+ Hg ⁺
	c) Cu + Hg → CuHg	d) Cu + Hg ²⁺ \rightarrow Cu ²	
59.	Calculate the volume of hydrogen at NTP obtained		_
	water for 30 minute :		
	a) 0.0836 litre b) 0.1672 litre	c) 0.0432 litre	d) 0.836 litre
60.	The standard emf of a cell involving one electron of		
	constant of the reaction is $(F = 96500 \text{ C mol}^{-1})$	O	•
	a) 1.0×10^1 b) 1.0×10^5	c) 1.0×10^{10}	d) 1.0×10^{30}
61.	The relationship between Gibbs' free energy chan	-	-
	is given by	6. ()	
	a) $\Delta G = nFE$ b) $\Delta G = nF/E$	c) $\Delta G = -nFE$	d) $\Delta G = E/nF$
62.	The reduction electrode potential, <i>E</i> of 0.1 M solut	•	,
	$(E_{RP} = -2.36 V)$ is		
	a) -4.82 V b) -2.41 V	c) +2.41 V	d) None of these
63.	Passage of 1 faraday of electricity through a soluti		,
	a) 1 mole of Cu b) 1 g-atom of Cu		d) 1 g equivalent of Cu
64.	The conductivity of $N/50$ solution of KCl in a cell		
	containing this solution is 400 ohm, the cell consta		111 111 111 111 111 111 111 111 111 111 111 111
	a) 1.106 cm b) 1.106 cm ⁻¹	c) 1 cm	d) 1 cm ⁻¹
65	The equilibrium constant for the reaction given be		u) 1 cm
001	$\operatorname{Zn}(s) + \operatorname{Fe}^{2+}(aq) \to \operatorname{Zn}^{2+}(aq) + \operatorname{Fe}(s);$		
	$E_{\text{cell}}^{\circ} = 2905 \text{ V at } 298 \text{ K}$		
	a) $e^{0.32/0.0295}$ b) $10^{0.595/0.76}$	c) 10 ^{0.0250/0.32}	d) 10 ^{0.32/0.295}
66	<i>y</i>	•	•
00.	When the sample of copper with zinc impurity is t	o be purmed by electrolysis	s, the appropriate electrodes
	are Cathode Anode		
	Lautuut Alluut		

pure copper

a) Pure zinc

		e copper ure sample		·	
	-	ure sample			
67	,	•	cell containing aqueous Ni	SO ₄ solution. Both Ni and H ₂	
07.		_		of nickel deposited on the	
	cathode per hour?	iode. The current emelenc	y 13 00 701 Willac is the mass	of meker deposited on the	
	a) 7.883 g	b) 3.941 g	c) 5.91 g	d) 2.645 g	
68		, ,	, .	olution using silver electrode	
001	by:	omaised to rig during t	ne electroly sis of rightog st	station asing silver electrode	
	a) 965 coulomb	b) 96500 coulomb	c) 9650 coulomb	d) 96.500 coulomb	
69	•	•	aining a mixture of 1 M y^-		
0,1	order of reduction potent	=	anning a minear o or 1 m y		
	a) y will oxidize x and no	-	b) y will oxidize x and z		
	c) y will oxidize z and no		d) y will reduce both x a	nd z	
70.	Which one of the following		• •		
	a) 0.1 M CH ₃ COOH	b) 0.1 M NaCl	c) 0.1 M KNO ₃	d) 0.1 M HCl	
71.	-	_	50_4 solution for 6 min 26 s.	-	
	deposited is (At. Wt. of $Cu = 63.5$, $1F = 96500 C$)				
	a) 0.3175 g	b) 3.175 g	c) 0.635 g	d) 6.35 g	
72.	A student made the follow	, 0	, ,	, 8	
		not react with 1 molar Pb	•		
			olution and crystals of Ag n	netal appeared.	
		not react with 1 molar Cu		• •	
		educing character of the t			
	a) Cu, Pb, Ag	b) Cu, Ag, Pb	c) Pb, Cu, Ag	d) Pb, Ag, Cu	
73.	The e. m. f. of the cell Z		1M) is 1.1 volt. If the star	ndard reduction potential of	
		hat is the oxidation potent		•	
	a) + 1.86 V	b) 0.32 V		d) -1.86 V	
74.	Standard reduction electrode potentials of three metals A , B and C are respectively $+$ 0.5 V, $-$ 3.0 V and $-$				
	1.2 V. The reducing power	ers of these metals are			
	a) $A > B > C$	b) $C > B > A$	c) $A > C > B$	d) $B > C > A$	
75.	Quantity of charge is mea	sured in :			
	a) ampere-sec.	b) ampere	c) ampere sec ⁻¹ .	d) amphere ^{–1} sec.	
76.	Which of the following w	ill form a cell with the high	nest voltage?		
	a) 0.1 M Ag ⁺ , 2 M Co ²⁺	b) 2 M Ag ⁺ , 2 M Co ²⁺	c) 1 M Ag ⁺ , 1 M Co ²⁺	d) 2 M Ag ⁺ , 0.1 M Co ²⁺	
77.	When electric current is p	oassed through acidified w	ater for 1930 s, 1120mL o	f H ₂ gas is collected (at STP)	
	at the cathode. What is the current passed in amperes?				
	a) 0.05	b) 0.50	c) 5.0	d) 50	
78.	In which of the following	pairs, the constants/ quar	ntities are not mathematica	lly related to each other?	
	a) Gibbs free energy and standard cell potential				
	b) Equilibrium constant and standard cell potential				
	c) Rate constant and activ				
	d) Rate constant and stan				
79.	The charge required for r				
	a) 96500 C	b) 2 × 96500 C	c) 3 × 96500 C	d) 6 × 96500 C	
80.	Cell constant has the unit				
	a) cm	b) cm ⁻¹	c) cm ²	d) cm sec ⁻¹	
81.		solution of an electrolyte v cm ⁻¹ . The equivalent cond		at 298 K, using a conductivity	
		-	-	ı. ⁻¹ d) 3.14 mho ⁻¹ cm ² eq. ⁻¹	
	,1.	, <u></u>	,	. ,	

GPLUS EDUCATION

82. IV. Cu + 2HCl
$$\rightarrow$$
 CuCl₂ + H₂(g)
$$[E_{Cu^{2+}/Cu}^{\circ} = +0.34 \, V]$$
V. Zn + 2HCl \rightarrow ZnCl₂ + H₂(g)
$$[E_{Zn^{2+}/Zn}^{\circ} = -0.76 \, V]$$
VI. Ag + 2HCl \rightarrow AgCl + $\frac{1}{2}$ H₂(g)
$$[E_{Ag^{+}/Ag}^{\circ} = +0.80 \, V]$$
Which of the following reaction is feasible?
a) (ii) b) (i) c) (iii) d) All of these

83. The standard potential at 25°C for the following half-reactions are given against them Zn²⁺ + 2e⁻ \rightarrow Zn, $E^{\circ} = -0.762 \, V$
Mg²⁺ + 2e⁻ \rightarrow Mg, $E^{\circ} = -2.37 \, V$
When zinc dust is added to the solution of MgCl₂, a) ZnCl₂ is formed b) Mg is precipitated c) Zn dissolves in the solution d) No reaction takes place

84. 1 coulomb of charge passes through solution of AgNO₃ and CuSO₄ connected in series and the concentration of two solution being in the ratio 1:2. The ratio of amount of Ag and Cu deposited on Pt electrode is:

a) 107.9:63.54

b) 54:31.77

c) 107.9:31.77

b) Mg is precipitated

d) No reaction takes place

c) (iii)

d) 54:63.54

d) All of these

85. When lead accumulator is charged, it is:

a) An electrolytic cell

b) A galvanic cell

c) A daniell cell

d) None of these

86. If the ΔG of a cell reaction AgCl + $e^- \rightarrow$ Ag + Cl⁻ is -21.20 kJ, the standard emf of cell is

a) 0.239 V

b) 0.220 V

c) -0.320 V

d) -0.110 V

87. $\Lambda_{ClCH_2COONa}^{\infty} = 224\Omega^{-1} \text{ cm}^2 \text{ g equiv}^{-1}$ $\Lambda_{\text{NaCl}}^{\infty} = 38.5\Omega^{-1} \text{ cm}^2 \text{ g equiv}^{-1}$

 $\Lambda_{HCl}^{\infty} = 203\Omega^{-1} \text{ cm}^2 \text{ g equiv}^{-1}$

What is the value of $\lambda_{ClCH_2COOH} = ?$

a) $288.5\Omega^{-1} \text{ cm}^2 \text{ g equiv}^{-1}$

c) $388.5\Omega^{-1}$ cm² g equiv⁻¹

d) $59.5\Omega^{-1}$ cm² g equiv⁻¹

88. When a copper wire is immersed in a solution of AgNO₃, the colour of the solution becomes blue because copper:

a) Forms a soluble complex with AgNO₃

b) Is oxidised to Cu²⁺

c) Is reduced to Cu²⁻

d) Splits up into atomic form and dissolves

89. The electrode potential of a glass electrode depends upon:

a) Concentration of chloride ions

b) Concentration of hydrogen ions

c) Concentration of KCl solution

d) None of the above

90. 0.04 N solution of a weak acid has conductivity 4.23×10^{-4} mho cm⁻¹. If the degree of dissociation of acid at this dilution is 0.0612, then equivalent conductivity at infinite dilution ismho cm² eq.⁻¹:

a) 172.8

b) 180

c) 190

d) 160

91. The highest electrical conductivity of the following aqueous solutions is of

a) 0.1 M difluoroacetic acid

b) 0.1 M fluoroacetic acid

c) 0.1 M chloroacetic acid

d) 0.1 M acetic acid

92. Which one is correct?

a) Ni displaces zinc from its solution

b) Zn displaces iron from its solution

			Gplus Education
	c) Ag displaces copper from its solution		•
	d) Cu displaces nickel from its solution		
93.	In an electrolytic cell of Ag AgNO ₃ Ag, when curre	ent is passed, the concentrat	tion of AgNO ₃ :
	a) Increases b) Decreases	c) Remains same	d) None of these
94.	The resistance of 1N solution of acetic is 250Ω , when	n measured in a cell having	a cell constant of
	1.15cm ⁻¹ . The equivalent conduction (in ohm ⁻¹ cm ²	_	
	a) 2.3 b) 4.6	c) 9.2	d) 18.4
95.	The standard reduction potential E° for the half reaching	-	,
	$Zn \rightarrow Zn^{2+} + 2e^{-}, E^{\circ} = 0.76 V$		
	$Cu \rightarrow Cu^{2+} + 2e^{-}, E^{\circ} = 0.34 V$		
	The emf for the cell reaction,		
	$\operatorname{Zn} + \operatorname{Cu}^{2+} \to \operatorname{Zn}^{2+} + \operatorname{Cu}$		
	a) 0.42 V b) -0.42 V	c) -1.1 V	d) 1.1 V
96.	Ionic mobility is equal to:	-,	,
	a) Speed of ions		
	b) Speed of ion under potential difference of 1 volt		
	c) Speed of ions under unit potential gradient		
	d) None of the above		
97.	At pH = $2, E^{\circ}_{\text{Quinhydrone}} = 1.30 V, E_{\text{Quinhydrone}}$ will	be:	
	OH O		
	+ 2H ⁺ + 2e ⁻	>	
	OH O		
	a) 1.36 V b) 1.30 V	c) 1.42 V	d) 1.20 V
98.	The equilibrium constant for the reaction : $Cu + 2Ag$		
	a) 2.0×10^{10} b) 4.0×10^{10}		d) 2.4×10^{10}
99.	For a given cell reaction; $Cr + 3H_2O + OCl^- \rightarrow Cr^{3-}$	$^+$ 3Cl $^-$ + 60H $^-$, the species	undergoing reduction is:
	a) Cr b) Cr ⁶⁺	c) OCl ⁻	d) Cl ⁻
100	If the $\mathrm{H^{+}}$ concentration is decreased from 1 M to 10		$e MnO_4^-/Mn^{2+}$, then the
	oxidising power of the MnO_4^-/Mn^{2+} couple decrease		
	a) -0.18 V b) 0.18 V	c) 0.38 V	d) -0.38 V
101	The standard e.m.f. of a galvanic cell involving the o	cell reaction with $n=2$ is for	ound to be 0.295 V at 25° C.
	The equilibrium constant of the reaction is:	2	40
	a) 2.0×10^{11} b) 4.0×10^{12}	c) 1.0×10^2	d) 1.0×10^{10}
102	If an iron rod is dipped in CuSO ₄ solution, then:		
	a) Blue colour of the solution turns red		
	b) Brown layer is deposited on iron rod		
	c) No change occurs in the colour of the solution		
4.0.5	d) None of the above	.1. 10	
103	Which of the following liberates hydrogen on reaction		15.44
101	a) Al b) Fe	c) Cu	d) Hg
104	Agalvanic cell with electrode potential of ' A ' = +2.2	3 V and $B' = -1.43$ V. The va	alue of $L_{ m cell}$ is

a) 3.66 V b) 0.80 V c) -0.80 V d) -3.66 V 105. A galvanic cell is composed of two hydrogen electrodes, one of which is a standard one. In which of the

following solutions should the other electrode be immersed to get maximum e.m. f.? c) 0.1 M H₃PO₄ d) 0.1 M H₂SO₄ a) 0.1 M HCl b) 0.1 *M* CH₃COOH

106. Which metal does not give the following reaction?

 $M + \text{water or steam} \rightarrow \text{oxide} + \text{H}_2 \uparrow$

			Gpius Education
a) Iron	b) Sodium	c) Mercury	d) Magnesium
107. 4.5 g of Al (at. mass 27 ar	nu) is deposited at cathode	from Al ³⁺ solution by a cer	tain quantity of charge. The
volume of H ₂ produced a	t STP from H ⁺ ions in soluti	ion by the same quantity of	charge will be :
a) 11.2 L	b) 44.8 L	c) 5.6 L	d) 22.4 L
108. In the electrolysis of acid	ulated water, it is desired to	o obtain 1.12 cc of hydroger	n per second under STP
condition. The current to		, ,	•
a) 1.93 A	b) 9.65 A	c) 19.3 A	d) 0.965 A
109. The speed of ions during	•	•	,
a) Nature of ion	b) Potential gradient	•	d) All of these
110. The best way to prevent	,	•,	,
a) Making it cathode		b) Putting in saline water	
c) Both (a) and (b)		d) None of these	
111. The hydrogen electrode i	s dinned in a solution of nE	•	notential of the cell would
be:	is dipped in a solution of pr	1 – 5 at 25 G. The reduction	i potential of the cen would
a) 0.177 V	b) – 0.177 V	c) 0.087 V	d) 0.059 V
112. Conductivity (unit Sieme	•	•	•
	sely proportional to the len		
	sery proportional to the leng	gui oi the vessei. Then, the	units of the constant of
proportionality is	b) S ² m ² mol ⁻²	a) C 2 a1-1	d) C al=1
a) S^2 m ² mol	•	c) $S m^2 mol^{-1}$	d) S m mol ⁻¹
113. The metal that cannot be	•		l) n
a) K	b) Mn	c) Cr	d) Fe
114. In the concentration cells	s, the electrical energy is pro	oduced due to :	
a) Oxidation of fuel	S 1. 3	>	
b) Heat energy	131		
c) Chemical reaction	~		
-	e from one concentration to		
115. How many faraday are no			
a) 4	b) 5	c) 3	d) 2
116. For the cell,	OLTO2 FD 66	SECTION	
T1 T1 ⁺ (0.001 M) Cu ²	⁽⁺ (0.1 M) Cu		
$E_{ m cell}$ at 25°C is 0.83 V. $E_{ m cell}$	_{ll} can be increased		
a) By decreasing [Cu ²⁺]		b) By increasing [Cu ²⁺]	
c) By increasing [T1 ⁺]		d) None of these	
117. In an aqueous solution, h	ydrogen (H ₂) will not reduc	ce:	
a) Fe ³⁺	b) Cu ²⁺	c) Zn ²⁺	d) Ag ⁺
118. How many faradays of ele	ectricity are required to ele	ctrolyse 1 mole CuCl ₂ to co	, -
gas?	, ,	7	•
a) 1 F	b) 2 F	c) 3 F	d) 4 F
119. Which statement is not co	,	-,	,
	ctrolytic solution increases	with dilution	
-	ctrolytic solution decreases		
-	of an electrolytic solution de		
	ce of an electrolytic solution		
120. The correct value of e.m.f		i merease with unution	
	= -		
i) $E_{\text{cell}} = E_{\text{OP}}$ anode $-E_{\text{R}}$			
ii) $E_{\text{cell}} = E_{\text{OP}}$ anode $+ E_{\text{I}}$			
iii) $E_{\text{cell}} = E_{\text{RP}}$ anode + E_{RP}			
iv) $E_{\text{cell}} = E_{\text{OP}}$ anode $-E_{\text{OP}}$		a) (;;;) and 1 (;-;)	4) (::) d (:)
a) (iii) and (i)	b) (i) and (ii)	c) (iii) and (iv)	d) (ii) and (iv)
121. $\operatorname{Zn}^{2+} \to \operatorname{Zn}(s)$; $E^{\circ} = -$	0.76 <i>V</i>		

			Gplus Education
	$Cu^{2+} \rightarrow Cu(s); E^{\circ} = -0.34 V$		
	Which of the following is spontaneous?		
	a) $Zn^{2+} + Cu \rightarrow Zn + Cu^{2+}$	b) $Cu^{2+} + Zn \rightarrow Cu +$	Zn^{2+}
	c) $Zn^{2+} + Cu^{2+} \rightarrow Zn + Cu$	d) None of the above	
122	Reduction potentials of A , B , C , and D are 0.8 V, 0.79		ectively, Which element
	displaces all the other three elements?	,	,
	a) <i>B</i> b) <i>A</i>	c) <i>D</i>	d) <i>C</i>
123	Given,	·) 2	, -
	$E^{\circ}_{Cr^{3+}/Cr} = 0.72 V , E^{\circ}_{Fe^{2+}/Fe} = 0.42 V.$		
	The potential for the cell		
	$\frac{1}{2}$ Cr/Cr ³⁺ (0.1 M) Fe ²⁺ (0.01 M) Fe is		
		-) 0.220 V	4) 0.26 W
124	a) 0.26 V b) 0.399 V	c) -0.339 V	d) -0.26 V
124	The electroplating with chromium is undertaken be	ecause :	
	a) Electrolysis of chromium is easier		
	b) Chromium can form alloys with other metals		
	c) Chromium gives a protective and decorative coa	ting to the base metal	
	d) Of high reactivity of chromium metal		
125	Which of the following is not correct?		
	a) Aqueous solution of NaCl is an electrolyte.		
	b) The units of electrochemical equivalent are g-co		
	c) In the Nernst equation, n represents the number		the electrode reaction.
	d) Standard reduction potential of hydrogen electron	ode is zero volt.	
126	H ₂ cannot be displaced by	2	
	a) Li ⁺ b) Sr ²⁺	c) Al ³⁺	d) Ag ⁺
127	The standard reduction potential of Zn and Ag in w	ater at 298 K are,	
	$Zn^{2+} + 2e^{-} \rightleftharpoons Zn; E^{\circ} = -0.76 \text{ V and}$		
	$Ag^+ + e^- \rightleftharpoons Ag$; $E^\circ = +0.80 V$. Which of the		
	a) Zn^{2+} (aq) + $2Ag(s) \rightarrow 2Ag^{+}(aq) + Zn(s)$	b) $Zn(s) + 2Ag^{+}(aq) -$	\rightarrow Zn ²⁺ (aq) + 2Ag (s)
	c) Zn^{2+} (aq) + Ag^{+} (aq) $\rightarrow Zn$ (s) + Ag (s)	d) $Zn(s) + Ag(s) \rightarrow Zn$	n^{2+} (aq) + Ag ⁺ (aq)
128	The amount of an ion discharged during electrolysi	s is not dependent of :	
	a) Resistance of solution		
	b) Time		
	c) Current strength		
	d) Electrochemical equivalent of the element		
129	The conductivity of a 0.1 N KCl solution at 23 $^{\circ}$ C is	$0.012 \text{ ohm}^{-1} \text{ cm}^{-1}$. The res	istance of the cell containing
	the solution at the same temperature was found to	be 55 ohm. The cell constar	nt will be :
	a) 0.918 cm ⁻¹ b) 0.66 cm ⁻¹	c) 1.142 cm ⁻¹	d) 1.12 cm ⁻¹
130	Reduction potential of four elements P , Q , R , S is -2	2.90, +0.34, +1.20 and -0.7	6. Reactivity decreases in
	the order		
	a) $P > Q > R > S$ b) $S > R > Q > P$	c) $P > S > Q > R$	d) $Q > S > R > P$
131	Which of the following statements are correct conc	erning redox properties?	
	I Ametal M for which E° for the half reaction		
	$M^{n+} + ne^{-} = M$, is very negative will be Ag	good reducing agent.	
	II The oxidizing power of the halogens decreas	es from chlorine to iodine.	
	III The reducing power of hydrogen halides ind	creases from hydrogen chlo	oride to hydrogen
	iodide.	- -	, ,
	a) I, II and III b) I and II	c) I only	d) II and III only
132	A cell with two electrodes, one of grey tin and the		
	showed zero e.m.f. at 18°C. What conclusion may b		

a) The e.m.f. developed at the electrode-solution phase boundary cancels the normal e.m.f.

- b) Grey tin being non-metallic ceases to provide a reversible electrode reaction
- c) Electrode surface develops a protective layer and the cell develops a very large internal resistance
- d) The standard Gibbs energy change of the cell becomes zero
- 133. Aluminium displaces hydrogen from dilute HCl whereas silver does not. The emf of Acell prepared by combining Al/Al $^{3+}$ and Ag/Ag $^{+}$ is 2.46 V. The reduction potential of silver electrode is +0.80 V. The reduction potential of aluminium electrode is
 - a) +1.66 V
- b) -3.26 V
- c) 3.26 V
- 134. For $I_2 + 2e \rightarrow 2I^-$, standard reduction potential = + 0.54 volt. For $2Br^- \rightarrow Br_2 + 2e^-$, standard oxidation potential = -1.09 volt. For Fe \rightarrow Fe²⁺ + 2e⁻, stabdard oxidation potential = + 0.44 volt. Which of the following reactions is non-spontaneous?
 - a) $Br_2 + 2I^- \rightarrow 2Br^- + I_2$
 - b) Fe + Br₂ \rightarrow Fe²⁺ + 2Br⁻
 - c) Fe + $I_2 \rightarrow Fe^{2+} + 2I^-$
 - d) $I_2 + 2Br^- \rightarrow 2I^- + Br_2$
- 135. When KMnO₄ acts as an oxidizing agent and ultimately forms MnO₄²⁻, MnO₂, Mn₂O₃ and Mn²⁺ then the number of electrons transferred in each case respectively, are
 - a) 4, 3, 1, 5
- b) 1, 5, 3, 7
- c) 1, 3, 4, 5
- d) 3, 5, 7, 1
- 136. For a cell reaction involving a two electron change, the standard emf of the cell is found to be 0.295 V at 25°C. The equilibrium constant of the reaction, at 25°C, will be
 - a) 10

- b) 1×10^{10}
- c) 1×10^{-10}
- d) 10×10^{-2}
- 137. Which one of the following has the highest molar conductivity?

- b) Tetraaminedichlorocobalt (III) chloride
- d) Hexaaquochromium (III) bromide
- c) Potassium hexacyanoferrate (II) 138. Electrode potential of Zn^{2+}/Zn is -0.76 V and that of Cu^{2+}/Cu is +0.34 V. The emf of the cell constructed between these two electrodes is
 - a) 1.10 V
- b) -1.10 V
- c) 2.20 V
- d) 2.20 V
- 139. The standard reduction potentials at 298 K for the following half-cell reactions are given

$$\operatorname{Zn}^{2+}(aq) + 2e^{-} \rightleftharpoons \operatorname{Zn}(s); -0.762 V$$

 $\operatorname{Cr}^{3+}(aq) + 3e^{-} \rightleftharpoons \operatorname{Cr}(s);$

 $2H^+(aq) + 2e^- \rightleftharpoons H_2(q);$ +0.00 V

$$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq); +0.77 V$$

Which one of the following is the strongest reducing agent?

- a) Zn (s)
- b) Cr(s)
- c) H_2 (s)
- d) Fe^{2+} (aq)
- 140. How long (in hours) must a current of 5.0 A be maintained to electroplate 60 g of calcium from molten CaCl₂?
 - a) 27 h

- b) 8.3 h
- c) 11 h

d) 16 h

- 141. Use of electrolysis is
 - a) Electrorefining
- b) Electroplating
- c) Both (a) and (b)
- d) None of these
- 142. What is the cell reaction occurring in Daniel cell (Galvanic cell)?
 - a) $Cu(s) + ZnSO_4(aq) \rightarrow CuSO_4(aq) + Zn(s)$
 - b) $Zn(s) + CuSO_4(aq) \rightarrow Cu(s) + ZnSO_4(aq)$
 - c) Ni(s) + ZnSO₄(aq) \rightarrow NiSO₄(aq) + Zn(s)
 - d) $2Na(s) + CdSO_4(aq) \rightarrow Na_2SO_4(aq) + Cd(s)$

	u) 2114(3) 1 64564(44) 1 1142564(44) 1					
143.	Electr	KCl	KNO ₃	HCl	Na0	NaCl
	olyte				Ac	
	$\Lambda^{\infty}(S ci$		145.	426.	91.0	126.
	mol^{-1})	9	0	2		5

Calculate Λ^{∞}_{HOAc} using appropriate molar conductances of the electrolytes listed above at infinite dilution in H₂O at 25°C.

_					,
Gpl	ווו	Fd	uc	atı	on

			Gplus Education
a) 217.5	b) 390.7	c) 552.7	d) 517.2
144. Is the reaction, $2Al +$	$3Fe^{2+} \rightarrow 2Al^{3+} + 3Fe poss$	ible?	
a) No, because standa	ard oxidation potential of Al	< Fe	
b) Yes, because stand	ard oxidation potential of Al	> Fe	
c) Neither (a) nor (b))		
d) Data are unpredict	able		
		_	HCl solution of pH value 1.0?
a) - 59.15 V	b) +59.15	c) +59.15 mV	d) -59.15 mV
	0.01 N solution is found to b	$e 0.005 \text{ ohm}^{-1} \text{ cm}^{-1}$. The	
-	rity of the solution will be	2 . 1	2
a) 5×10^{-2} ohm ⁻¹ cr	-	b) 5.00×10^{-3} ohm ⁻¹	
c) 500 ohm ⁻¹ cm ⁻² e		d) $0.5 \text{ ohm}^{-1} \text{ cm}^2 \text{ equiv}$	
	nical series can be obtained	l from K, Ca, Na, Al, Mg, Zi	n. Fe, Pb, H, Cu, Hg, Ag, Au by
interchanging:) 7 1 1 1 1 1 1 1 1 1	D DI LII
a) Al and Mg	b) Zn and Fe	c) Zn and Pb	d) Pb and H
	n Zn ²⁺ (0.01 M) Fe ²⁺ (0.00)1 M) Fe at 298 K is 0.290	5. The value of equilibrium
constant for the cell r		0.32	0.26
a) $10^{10^{\frac{0.32}{0.0298}}}$	b) $e^{\frac{0.32}{0.0295}}$	c) $10^{\frac{0.32}{0.0591}}$	d) $10^{\frac{0.26}{0.0295}}$
149. When Alead storage b	oattery is discharged		
a) Lead sulphate is co	onsumed	b) SO ₂ is evolved	
c) Lead is formed		d) Sulphuric acid is con	isumed
	ctrode in term of pH is (at 1 a		
a) $E_{H_2} = \frac{RT}{F} \times pH$	- 1	b) $E_{H_2} = \frac{RT}{F} \cdot \frac{1}{pH}$	
		p	
c) $E_{H_2} = \frac{2.303RT}{F}$. p	H	d) $E_{H_2} = -0.0591 \text{ pH}$	
151. If $E_{\text{p-2+/p-}}^{\circ} = -0.441$	V and $E_{p=3+\sqrt{p=2+}}^{\circ} = 0.771 \text{ V}$.	the standard e.m.f. of the	reaction Fe + 2Fe ³⁺ \rightarrow 3Fe ²⁺
will be :	Fest/Fest	CATION	
a) 1.212 V	b) 0.111 V	c) 0.330 V	d) 1.653 V
•	t in CuSO ₄ solution, copper g		u) 1.000 ·
	n potential of zinc is more tha		
	n potential of zinc is less thar	= =	
•	zinc is larger than copper	••	
	zinc is lower than copper		
153. Ionic mobility of of el	ectricity is 1 <i>M</i> solution of :		
a) CH ₃ COOH	b) H ₂ SO ₄	c) H_3PO_4	d) Boric acid
154. The equivalent condu	activity of 0.1 M weak acid is	s 100 times less than that a	at infinite dilution. The degree
of dissociation of wea	ak electrolyte at 0.1 <i>M</i> is :		
a) 100	b) 10	c) 0.01	d) 0.001
155. Standard electrode po	otential of cell H ₂ H ⁺ Ag ⁺ A	Ag is (Given, $E^{\circ}_{Ag^+/Ag} = 0.8$	30 V)
a) 0.4 V	b) 0.8 V	c) 1.4 V	d) 1.8 V
=	ed into the solution of an elec	=	
	rds anode, cations towards c	athode	
=	s both move towards anode	,	
-	rds cathode, cations towards	anode	
d) No movement of ic	_		
157. The element that is ea		a) Aa	d) Sn
a) Fe	b) Cu	c) Ag 7n H+IH, and Ag+IAg	d) Sn is -3.05, -0.762, 0.00 and +
130, Stanuaru Teuutuoli	potential ioi, Li [Li,Zil]	Lii, ii jii2 aliu Ag JAg	13 — 3.03, —0.702, 0.00 and +

				Opius Luucution
	80 V. Which has highest re			
	a) Ag	b) H ₂	c) Zn	d) Li
159.	What is the quantity of ele	ectricity (in Coulombs) req	uired to deposit all the silve	er from 250mL of 1
	MAgNO ₃ solution?			
	a) 2412.5	b) 24125	c) 4825.0	d) 48250
160.	When 1 faraday of electric		$ ho_4$ solution, number of atom	
	a) 6.02×10^{23}	b) 3.01×10^{23}	c) 2	d) 6.02×10^{23}
161.	Hydrogen gas is not libera	nted when the following me	etal is added to dil. HCl	
	a) Ag	b) Zn	c) Mg	d) Sn
162.	In Ahydrogen-oxygen fuel	cell, combustion of hydrog	gen occurs to	
	a) Generate heat			
	b) Create potential differe	nce between the two elect	rodes	
	c) Produce high purity wa	nter		
	d) Remove adsorbed oxyg	gen from electrode surfaces	5.	
163.			electrolyte is always equal t	to:
	a) 1	b) 2	c) 1/2	d) None of these
164.		y through molten sodium o	chloride, sodium deposited	
	a) 29.25 g	b) 11.50 g	c) 58.50 g	d) 0.00 g
165.	_		,	e mass of copper deposited
	at the cathode?	· · · · · · · · · · · · · · · · · · ·		The second of th
	a) 2.096 g	b) 0.296 g	c) 3.029 g	d) 2.906 g
166			lution of LiCl, NaCl and KCl	,
1001	a) LiCl > KCl > NaCl		c) LiCl > NaCl > KCl	d) NaCl > KCl > LiCl
167	•		-	3) were electrolyzed under
1071	•		•	en $2.1 \mathrm{g}$ of A was deposited,
			g. The valencies of <i>A, B</i> and	
		b) 1, 3 and 2	c) 3.1 and 3	d) 2,3 and 2
160	-			uj 2,3 anu 2
100.	a) SHE	PLUS EDUC	AHUN .	
	b) Calomel electrode			
	c) Ag/AgCl electrode			
	, ,, ,			
1.00	d) Quinhydrone electrode			
169.	Molar conductance of elec) (4.10)	n ([5
	a) $\propto l$	b) $\propto (1/A)$	c) $\propto (1/C)$	d) $\propto (\sqrt{C})$
170.	Which metal is most readi	=		
	a) Copper	b) Iron	c) Silver	d) Nickel
171.	-		ied out by passing 10mA cu	ırrent. The time required
		$_2$ gas at the cathode is (1F =		
	a) $9.65 \times 10^4 s$	b) $19.3 \times 10^4 s$	c) $28.95 \times 10^4 s$	d) $38.6 \times 10^4 s$
172.	The oxidation potential of	f Mg and Al are $+ 2.37$ and	+ 1.66 volt respectively. The	ne Mg in chemical reactions
	:			
	a) Will be replaced by Al			
	b) Will replace Al			
	c) Will not be able to repla	ace Al		
	d) None of the above			
173.	The weight of silver (eq.	wt. = 108) displaced by	that quantity of current w	hich displaced 5600 mL of
	hydrogen at STP is:	·		
	a) 54 g	b) 108 g	c) 5.4 g	d) None of these
174.			550 C of charge pass throug	
	the mass of silver denosite			· · · · · · · · · · · · · · · · · · ·

			Gpius Eaucation
a) 1.08 g	b) 10.8 g	c) 21.6 g	d) 108 g
175. The standard oxidation p	otentials of the electrodes	Ag Ag ⁺ , Sn Sn ²⁺ , Ca Ca ²	²⁺ , Pb Pb ²⁺ are – 0.8, 0.136,
2.866 and 0.126 V respec	tively. The most powerful	oxidising agent among thes	e metal ions is :
a) Pb ²⁺	b) Ca ²⁺	c) Sn ²⁺	d) Ag ⁺
176. Pure water does not cond	luct electricity because it		, ,
a) Is neutral		b) Is readily decomposed	
c) Is almost totally union	izad	d) Has a low boiling point	
-			L
177. The minimum equivalent		· · · · · · · · · · · · · · · · · · ·	D C CI
a) MgCl ₂	b) BeCl ₂	c) CaCl ₂	d) SrCl ₂
178. A cell necessarily does no	t contain :		
a) An anode			
b) A cathode			
c) An electrolyte or a fuel	ı		
d) A porous diaphragm			
179. The standard redox poter	ntials for the reactions		
$Mn^{2+} + 2e^- \longrightarrow and Mn^{2}$	$^{3+} + e^{-} \rightarrow M^{2+}$ are -1.18	3 V and 1.51 V respectively.	What is the redox potenital
for the reaction			_
$Mn^{3+} + 3e^- \rightarrow Mn$?			
a) 0.33 V	b) 1.69 V	c) -0.28 V	d) - 0.85
180. During electrolysis of fus	•	•	u, 0.00
a) Anode	b) Cathode	c) Either electrode	d) Not at all
181. Total charge on 1 mole of		-	uj Not at an
_		_	d) None of these
•	b) 1.6 \times 10 ⁻¹⁹ coulomb	c) 9.65 × 10 · coulomb	d) None of these
182. For which case Λ values v			
a) KCl	b) HCOOH	c) CH ₃ NH ₂	d) CH ₃ COOH
183. Which is not true for a sta		??	
 a) The hydrogen ion cond 	entration is 1 <i>M</i>		
b) Temperature is 25°C	TEDLLIS EDUC	TATION	
c) Pressure of hydrogen i	s 1 atmosphere	27112011	
d) It contains a metallic c	onductor which does not a	dsorb hydrogen	
184. The laws of electrolysis w	ere proposed by		
a) Kohlrausch	b) Faraday	c) Haber	d) Bergius
185. The metal that cannot be		•	, ,
a) Ag	b) Cr	c) Cu	d) Al
186. A certain current liberate	•	•	•
	the same time in a copper	· -	pper can be inserted by the
a) 12.9 g	b) 15.9 g	c) 31.7 g	d) 36.9 g
187. If mercury is used as catl	, 0		, ,
	iode in the electrolysis of	aqueous waci solution, the	ions discharged at cathode
are:	L) N -+	-) OII=	1) CI=
a) H ⁺	b) Na ⁺	c) OH ⁻	d) Cl ⁻
188. Specific conductivity of a	solution		
a) Increases with dilition		b) Decreases with dilutio	
c) Remains unchanged w		d) Depends on mass of el	ectrolyte
189. When an electrolytic solu	_	urrent is carried out by :	
a) Electrons	b) Cations and anions	c) Neutral atoms	d) None of these
190. e.m.f. of a cell in terms of	reduction potential of its le	eft and right electrode is :	
a) $E = E_L + E_R$	b) $E = E_L - E_R$	c) $E = E_R - E_L$	$d) E = -[E_R + E_L]$
191. Which defines the standa			
a) $\operatorname{Zn}^{2+}(aq) + 2e \longrightarrow \operatorname{Zn}($	-		
b) $\operatorname{Zn}(g) \to \operatorname{Zn}^{2+} + 2e$;			
, (6) === (==)	L J		

	c) $Zn^{2+}(aq) \rightarrow Zn(s) + 2e$; $[Zn^{2+}] = 1M$ d) $Zn^{2+}(g) \rightarrow Zn(s) - 2e$; $[Zn^{2+}] = 1M$		•
192.	Given, the data at 25 °C,		
	$Ag + I^- \rightarrow AgI + e^-; E^\circ = 0.152 V$		
	$Ag \rightarrow Ag^{+} + e^{-}; \qquad E^{\circ} = -0.800V$		
	What is the value of $\log K_{\rm sp}$ for AgI?		
	$\left(2.303 \frac{RT}{F} = 0.059 V\right)$		
	a) - 8.12 b) +8.612	c) -37.83	d) -16.13
193.	The molar conductivity of HCl, NaCl and CH ₃ COONa	a are 425, 188, 96 <i>S</i> cm² r	nol^{-1} at 298 K. The molar
	conductivity of CH ₃ COOH at the same temperature is		
	a) 333 b) 451	c) 325	d) 550
194.	In the electrolysis of CuCl ₂ solution using Cu electr	odes the mass of cathode	increases by 3.18 g. What
	happened at the other electrode?		
	a) 0.05 mole of Cu ²⁺ ions passed into solution		
	b) 0.112 litre of Cl ₂ was liberated		
	c) 0.56 litre O ₂ was liberated		
	d) 0.1 mole of Cu ²⁺ ions passed into the solution		
195.	When a quantity of electricity is passed through CuSO	O ₄ solution, 0.16 g of coppe	r gets deposited. If the
	same quantity of electricity is passed through acidula		
	be [Given, atomic weight of Cu = 64]		2
	•	c) 604 cm ³	d) 8.0 cm^3
196.	Faraday's laws hold good at:	in .	
	The state of the s	c) In different solvents	d) All of these
197.	The standard reduction potentials at 25°C	•	•
	-3.05, -2.73 , -2.71 and -2.37 V respectively. Which		
	a) Li b) Ba	c) Na	d) Mg
198.	In which cell, electrical energy is converted into chen	nical energy?	, ,
	9 MP1115 L.131A5.	c) Coulometer	d) Either of these
199.	Passage of 96500 coulomb of electricity liberatesli	itre of O ₂ at NTP during elec	ctrolysis.
	a) 5.6 b) 6.5	c) 22.2	d) 11.2
200.	The number of coulombs required for the deposition	of 107.870 g silver is	
	a) 96500 b) 48250	c) 1	d) 10000
201.	The units of equivalent conductance, are		
	a) Ω cm ² equiv b) Ω cm ² equiv	c) Ω^{-1} cm ² equiv ⁻¹	d) Ω cm ² equiv
202.	For strong electrolytes the plot of molar conductance	$vs\sqrt{C}$ is	
	a) Parabolic b) Linear	c) Sinusoidal	d) Circular
203.	The value of Λ_{eq}^{∞} for NH ₄ Cl, NaOH and NaCl are respe		-
	value of Λ_{eq}^{∞} of NH ₄ OH is	•	•
	a) 371.44	b) 271.44	
	c) 71.44	d) Cannot be predicted fro	ım given data
204.	The standard electrode potentials of Ag^+ / Ag is $+0.8$	= = = = = = = = = = = = = = = = = = = =	=
	connected through Asalt bridge and if	your and our yours role ?	Transcore execute a constant
	a) Copper electrode acts as Acathode then E_{cell}° is $+0$	46 V	
	b) Silver electrode acts as anode then E_{cell}° is -0.34 V	110 V	
		17	
	c) Copper electrode acts as anode then E_{cell}° is $+0.46$		
06-	d) Silver electrode acts as Acathode then E_{cell}° is -0.34		7 TO 0 . 2±1:
205.	e.m.f. of cell Ni Ni ²⁺ (0.1 M) Au ³⁺ (1.0 M) Au is,		
	a) + 1.25 V b) -1.75 V	c) + 1.75 V	d) + 4.0 V

GPLUS EDUCATION

			Gplus Education ectropositive character is given to stir a solution of aluminium
nitrate?			
a) The spoon will get	coated with aluminium		
b) An alloy of copper a	and aluminium is formed		
c) The solution becom	ies blue		
d) There is no reaction	1		
207. Which of the following		Galvanic cell converts	
a) Chemical energy in			
b) Electrical energy in		_	
•	ental state to the combin	ed state	
d) Electrolyte into ind	ividual ions		
208. For cell reaction, $Zn + Cu^{2+} \rightarrow Zn^{2+}$	I. Co.		
	+ Cu		
Cell representation is a) Zn Zn ²⁺ Cu ²⁺ (`11	b) Cu Cu ²⁺ Zn ²⁺ 2	7n
c) Cu Zn ²⁺ Zn Cu ²		d) Cu ²⁺ Zn Zn ²⁺ (
, , , , ,		volume of O_2 liberated at STI	
a) 280 mL	b) 560 mL	c) 1120 mL	d) 2240 mL
210. Consider the following	•	o) 11 1 0	a, 10 1112
$2ClO_3^- \rightleftharpoons ClO_2^- + ClO_4^-$	9 F F		
= = =	tion of perchlorate ion is	0.1 M what it would be at eq	uilibrium at 298 K?
	and $E_{\text{ClO}_{3}^{-}/\text{ClO}_{2}^{-}}^{\circ} = 0.33 \text{ V}$		
a) 0.1 M	b) 0.05 M	c) 0.07 M	d) 0.19 M
211. When Cu reacts with A			,
a) Oxidation of Cu	- -	c) Oxidation of Ag	d) Reduction of NO_3^-
			J J
212. E° for $F_{2+} + 2e = 2F^{-}$ a) 2.8 V	b) 1.4 V	c) - 2.8 V	d) — 1.4 V
213. Which one of the follo			
a) 0.1 <i>M</i> CH ₃ COOH	b) 0.1 <i>M</i> NaCl	c) 0.1 <i>M</i> KNO ₃	d) 0.1 <i>M</i> HCl
-			are -440 V and -0.036 V
	-	(E°) for $Fe^{3+} + e \longrightarrow Fe^{2+}$ is	
a) — 0.476 V	b) — 0.404 V	c) $+ 0.404 \text{ V}$	d) + 0.772 V
215. Stainless steel does not			
a) Chromium and nick			
=	n oxide layer and protects	s iron from rusting	
c) Nickel present in it		1	
-	hemical compound with o	-	0.241
		vith KCl and KI. In which case	
a) With KCl	b) With KI	c) With both (a) and (b) a) None of these
217. The main function of t	from one cell to another		
b) To provide link bet			
c) To keep the e.m.f. o			
	cal neutrality of the solut	ion in two half cells	
		solution of silver nitrate (ator	mic weight of $Ag = 107.87$

GPLUS EDUCATION WEB: WWW.GPLUSEDUCATION.ORG **PHONE NO: 8583042324** Page | 16

c) 15.8 mg

d) 20.8 mg

taking as 108), the amount of silver deposited is

219. The oxidation number of S in $Na_2S_4O_6$ is

a) 2.5 for each S atom

b) 10.8 mg

a) 5.8 mg

,	ve +2 and other two have +	-3)	•		
	ave +2 and one S has +3)				
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	+5 and other two have zer				
220. E° values of Mg ²⁺ / Mg i	·	76 V and Fe ²⁺ / Fe is -0.44	V.		
Which of the statements	is correct?				
a) Zn will reduce Fe ²⁺		b) Zn will reduce Mg ²⁺			
c) Mg oxidises Fe		d) Zn oxidises Fe			
221. Kohlrausch's law states					
	ion makes definite contribu	•	ance of an electrolyte		
	ure of the other ion of the e				
_		ution to conductance of an	electrolyte whatever be the		
nature of the other io	•				
	ion makes definite contribu		tance of an electrolyte,		
	re of the other ion of the ele	=	ć 1 . 1 .		
-	on makes definite contribut	-	nce of an electrolyte,		
	re of the other ion of the ele		1004141 0 440		
222. What is the potential of					
a) <i>E</i> °	b) $E^{\circ} + 0.059$	c) $E^{\circ} + \frac{0.059}{2}$	d) <i>E</i> ° - 0.059		
223. Electrolysis involves oxi	dation and reduction respe	ctively at			
a) Anode and cathode		b) Cathode and anode			
c) At both the electrodes	S	d) None of these			
224. The equivalent conducti	vity of two strong electroly	tes at infinite dilution are :			
$\mathring{\Lambda}_{\text{CH}_3\text{COONa(aq.)}} = 91.0 \text{ S}$	$cm^2 eq.^{-1}$	2			
$\mathring{\Lambda}_{HCl(aq.)} = 426.2 \text{ S}$					
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ation one needs to calculate	Å of an aqueous CH, COOH	2		
	b) Å of CH ₃ COOK	_	d) Å of H ⁺		
225. In the electrolysis of CuS			uj N ol II		
a) Anode		c) In solution	d) None of these		
226. The standard emf of a ga		=	•		
_	the redox reaction of the co		caedon is 0.57 v. The		
a) 10^{20}	b) 10 ⁵	c) 10	d) 10 ¹⁰		
227. The amount of silver dep	-		-		
a) 2.7 g	b) 2.7 mg	c) 0.27 g	d) 0.54 g		
228. The conductivity of sat	, ,	, ,	, ,		
	The conductivity of CaF_2 a		and that of water about for		
a) 3.71×10^{-5}	b) 4.01×10^{-5}	c) 3.7×10^{-4}	d) 3.86×10^{-4}		
229. Four alkali metals <i>A</i> , <i>B</i> , <i>C</i>			-		
	l 0.80. Which one will be th	•	terretar as		
a) A	b) <i>B</i>	c) <i>C</i>	d) <i>D</i>		
230. An increase in equivalen	,				
a) Increase in ionic moli		ou ory to wrem underom is me	any due to:		
	=	1			
-	b) 100% ionisation of electrolyte at normal dilution c) Increase in both i.e., no. of ions and ionic mobility				
d) Increase in no. of ions	·				
231. The number of coulomb		of nitrobenzene to aniline i	is		
a) 115800 C	b) 5790 C	c) 28950 C	d) 57900 C		
232. The cell constant is	<i>y</i> - · · ·	<i>,</i>	<i>,</i> - · · · · ·		
1	a	a) a v l	K K		
a) $\frac{\iota}{a}$	b) $\frac{a}{l}$	c) $a \times l$	d) $\frac{\kappa}{R}$		

233. The factors which influence the conductance of solu	tion.	
a) Solute-solute interaction		
b) Solute-solvent interaction		
c) Temperature		
d) All of the above		
234. In a cell containing zinc electrode and standard hydr	rogen electrode(SHE), the z	zinc electrode acts as :
a) Anode		
b) Cathode		
c) Neither cathode nor anode		
d) Both anode and cathode		
235. The best conductor of electricity is a 0.1 <i>M</i> solution of	of:	
a) Boric acid b) Sulphuric acid	c) Acetic acid	d) Propionic acid
236. Electrode potential of hydrogen electrode is vo		•
a) 0 b) +1	c) -1	d) None of these
237. Which aqueous solution will conduct an electric curr	rent quite well?	,
a) Glycerol b) Sugar	c) Hydrochloric acid	d) Pure water
238. Use of electrolysis is not done in		,
a) Production of Na	b) Production of water	
c) Purification of metals	d) Production of KOH	
239. Beryllium is placed above magnesium in the II gre	•	fore, when added to MgCl ₂
solution will:		,
a) Have no effect		
b) Precipitate Mg metal		
c) Precipitate MgO		
d) Lead to dissolution of Be metal		
240. When electric current is passed through an ionic hyd	dride in molten state	
a) Hydrogen is liberated at anode	b) Hydrogen is liberated	at cathode
c) No change takes place	d) Hydride ions migrates	
241. Which of the following electrolytic solutions has the		
a) 0.02 N b) 0.2 N	c) 2 N	d) 0.002 N
242. During the electrolysis of an electrolyte, the number	•	•
a) Time consumed	b) Mass of electrons	ly proportional to the
c) Quantity of electricity passed	d) Electrochemical equiv	alent of electrolytes
243. 1.8 g of metal were deposited by a current of 3 ampe		
a) 20.5 b) 25.8	c) 19.3	d) 30.7
244. Which substance is obtained in the solution on elect		
electrodes?	olysis of aqueous cuso ₄ s	olution using graphite
	a) Na SO	d) Cu(OH) ₂
a) H ₂ O b) H ₂ SO ₄	c) Na ₂ SO ₄	u) cu(011) ₂
245. During the electrolysis of fused NaCl, which reaction		د
a) Chloride ions are oxidized	b) Sodium ions are oxidiz	
c) Chloride ions are reduced	d) Sodium ions are reduc	
246. Which one of the following condition will increase the	ne voltage of the cell repres	sented by the equation?
$Cu(s) + 2Ag^{+}(aq) \rightleftharpoons Cu^{2+}(aq) + 2Ag(s)$	15.7	
a) Increase in the dimension of Cu electrode	b) Increase in the dimens	_
c) Increase in the concentration of Cu ²⁺ ions	d) Increase in the concen	tration of Ag ⁺ ions
247. Which will reduce zinc oxide to zinc?		
a) Mg b) Pb	c) Cu	d) Fe
248. The unit of electrochemical equivalent is :		
a) gram b) Gram/ampere	c) Kg/coulomb	d) Coulomb/gram
249. $\operatorname{Sn}^{4+} + 3e^{-} \rightarrow \operatorname{Sn}^{2+}, \qquad E^{\circ} = 0.13 V$		

$$Br_2 + 2e^- \rightarrow 2Br^-$$
, $E^\circ = 1.08 \, V$
Calculate $K_{\rm eq}$ for the cell reaction for the cell formed by two electrodes.
a) 10^{41} b) 10^{32} c) 10^{-32}
250. SI unit of conductivity is :
a) $0 \, {\rm hm}^{-1} \, {\rm cm}^{-1}$ b) $0 \, {\rm hm}^{-1} \, {\rm cm}^{-1}$ or $0 \, {\rm cm}^{-1}$

c)
$$10^{-32}$$

d) 10^{-42}

a)
$$ohm^{-1} cm^{-1}$$

d) ohm cm^{-1}

251. Ionic mobility of Ag⁺ is

$$(\lambda_{\rm Ag^+} = 5 \times 10^{-1} \, \Omega^{-1} \, {\rm cm^2 \ equiv^{-1}})$$

a)
$$5.2 \times 10^{-9}$$

b)
$$2.4 \times 10^{-9}$$

c)
$$1.52 \times 10^{-9}$$

d) 8.25×10^{-9}

252. $E_{Fe^{3+}/Fe}^{\circ} = -0.036 \,\mathrm{V}$, $E_{Fe^{2+}/Fe}^{\circ} = -0.439 \,\mathrm{V}$. The value of standard electrode potential for the charge,

$$\mathrm{Fe^{3+}}(aq) + e^{-} \rightarrow \mathrm{Fe^{2+}}(aq)$$
 will be

d) -0.270 V

253. Whether tin can displace lead from aqueous lead bromide solution?

- a) No
- b) Yes, because standard reduction potential of Sn < Pb
- c) Yes, because standard reduction potential of Sn > Pb
- d) None of the above
- 254. Given the standard reduction potentials

$$Zn^{2+}/Zn = -0.74 V$$
, $Cl_2 / Cl^- = 1.36 V$
 $H^+/\frac{1}{2}H_2 = 0 V$ and $Fe^{2+} / Fe^{3+} = 0.77 V$

The order of increasing strength as reducing agent is

a)
$$Cl^-$$
, Zn , H_2 , Fe^{2+}

255. Molar conductivities ($\mathring{\Lambda}_m$) at infinite dilution of NaCl, HCl and CH₃COONa are 126.4, 425.9 and 91.0 S cm² mol⁻¹ respectively. $\mathring{\Lambda}_m$ for CH₃COOH will be :

a)
$$425.5 \, \text{S cm}^2 \, \text{mol}^{-1}$$

c)
$$290.8 \,\mathrm{S} \,\mathrm{cm}^2 \,\mathrm{mol}^{-1}$$
 d) $390.5 \,\mathrm{S} \,\mathrm{cm}^2 \,\mathrm{mol}^{-1}$

256. KCl(aq) cannot be used as a salt bridge for the cell $Cu(s)|CuSO_4(aq)||AgNO_3(aq)|Ag(s)|$ because :

257. The ionic conductance of Ba²⁺ and Cl⁻ are respectively 127 and 76 Ω^{-1} cm² at infinite dilution. The equivalent conductance (in Ω^{-1} cm²) of BaCl₂ at infinite dilution will be

258. The Gibbs energy for the decomposition of Al_2O_3 at 500°C is as follows :

$$\frac{2}{3}$$
Al₂O₃ $\rightarrow \frac{4}{3}$ Al + O₂, $\Delta_{\rm r}G = +966$ kJ mol⁻¹.

The potential difference needed for electrolytic reduction of Al₂O₃ at 500°C is atleast:

259. Which of the following statements (or equation) is correct?

a) The units of cell emf are V_{\cdot} cm⁻¹

b)
$$\Delta G = -\frac{nF}{E_{\text{cell}}}$$

- c) In galvanic cell, chemical energy is transformed into electrical energy.
- d) Oxidation state of Mn in potassium permanganate is +6
- 260. Faraday's law of electrolysis fails when:
 - a) Temperature is increased
 - b) Inert electrodes are used
 - c) A mixture of electrolytes is used
 - d) In none of the above cases
- 261. Conductance 'C' (in S) in directly proportional to the area of the electrode and concentration and inversely proportional to length of separation of electrode, the unit of constant of proportionality is:
 - a) S m mol $^{-1}$
- b) $S m^2 mol^{-1}$
- c) S^{-2} m² mol
- d) S^2 m² mol²
- 262. A certain metal fails to liberate H₂ gas from a moderately conc. HCl solution. However, it displaces Ag from

			opius zaucation
AgNO ₃ solution. V	Which among the followings	may it be?	
a) Mg	b) Fe	c) Cu	d) Cd
	on Fe + $2Fe^{3+} = 3Fe^{2+}$, wh	ich is not possible?	
a) One cell can be			
b) Three differen	t cells with different $ extit{E}_{ ext{cell}}^{\circ}$ are	e possible	
c) Three differen	t cells with different number	r of electrons used in redox	reaction are possible
d) Three differen	t cells with same ΔG° value a	are possible	
264. Copper sulphate	solution does not react with		
a) Zinc	b) Iron	c) Silver	d) All of these
265. Rust is			
a) FeO + Fe(OH	$)_2$	b) Fe_2O_3	
c) $Fe_2 O_3 + Fe(0)$	$OH)_2$	d) $Fe_2 O_3$ and $Fe($	(OH) ₃
266. The conductivity	of strong electrolyte		
a) Increases on d	ilution slightly	b) Decreases on di	lution
c) Does not chan	ge with dilution	d) Depends upon o	lensity of electrolyte itself
267. An electric curre	nt of c ampere was passed t	hrough a solution of an ele	ctrolyte for $'t'$ second depositing P
g of the metal M	on the cathode. The equivale	ent weight E of the metal w	ill be :
a) $F = \frac{c \times t}{}$	$-$ b) $F = \frac{c \times P}{}$	c) $F = \frac{96500 \times I}{1000}$	$E = \frac{c \times t \times 9650}{P}$
			tionation reaction E° value for
disproportionation	on of $\operatorname{Cu^+}$ is $\left(\operatorname{given}, E_{\operatorname{Cu^{2+}}/\operatorname{Cu}}^{\circ}\right)$	The state of the s	•
a) + 0.38 V			d) — 0.49 V
			at 25°C are 91.0 and 426.2 S
cm²/mol respect	ively. To calculate Λ° _{HOAc} , th	ie additional value required	d is
a) Λ° _{H2} O	b) Λ° _{KCl}	c) Λ° _{NaOH}	d) Λ° _{NaCl}
270. The molar cond	uctivity of NaCl, HCl and (${ m CH_3COONa}$ at infinite dilu	ıtion are 126.45, 426.16 and 91
	¹ respectively. The molar co	nductivity of $\mathrm{CH_{3}COOH}$ at i	nfinite dilution is :
a) 201.28 ohm ⁻¹	$cm^2 mol^{-1}$	JUCATION	
b) 698.28 ohm ⁻¹	$cm^2 mol^{-1}$		
c) 390.71 ohm ⁻¹	$cm^2 mol^{-1}$		
d) 540.48 ohm ⁻¹	$cm^2 mol^{-1}$		
271. If the electrolyte	used in problem 4 is Ba(NO ₃	$_3)_2$, then molecular conduc	tivity of solution is :
a) 628.56 mho [–]	¹ cm ² molb) 628.56 mho cn	$m^2 \text{ mol}^{-1}$ c) 6.28 mho cm ² n	100^{-1} d) 6.28 mho ⁻¹ cm ² mol ⁻¹
272. The equivalent c	onductivity of KCl at infinite	e dilution is 130 mho cm ²	eq ⁻¹ . The transport number of Cl ⁻
ion in KCl at the s	ame temperature is 0.505. T	The transport number of K	ion is :
a) 0.495	b) 0.505	c) 0.0495	d) Cannot be predicted
273. A cell in which ele	ectric current is produced by	y net oxidation and reducti	on process is called :
a) Voltaic cell	b) Electrolytic cell	c) Concentration o	ell d) None of these
274. Electrolysis of aq	Solution of LiCl shows :	•	
a) pH < 7	b) $pH = 7$	c) $pH > 7$	d) No change
275. On the basis of th	e following E° values, the st	rongest oxidizing agent is :	, G
	$[\text{Fe}(\text{CN})_6]^{3-} + e^-; E^\circ = -0.3.$		
$Fe^{2+} \rightarrow Fe^{3+} + \epsilon$			
a) Fe ²⁺	b) Fe ³⁺	c) $[Fe(CN)_6]^{3-}$	d) $[Fe(CN)_6]^{4-}$
-	uctance of 0.1 N KCl solution		
	lution at the same temperat		
a) 0.66 cm ⁻¹	b) 1.12 cm ⁻¹	c) 0.918 cm ⁻¹	d) 1.66 cm ⁻¹
•	re evolved in 6 hour from so	•	
a) 5 ampere	b) 10 ampere	c) 2.5 ampere	d) 50 ampere
J - 1 1	, 	, <u></u> F	7

- 278. For the electrochemical cell, $M \mid M^+ \mid \mid X^- \mid X$,
 - $E^{\circ}(M^{+}|M) = 0.44 V, E^{\circ} = (X|X^{-}) = 0.33 V$. From this datAone can deduce that
 - a) $E_{\text{cell}}^{\circ} = -0.77 V$
 - b) $M^+ + X^- \rightarrow M + X$ is the spontaneous reaction
 - c) $M + X \rightarrow M^+ + X^-$ is the spontaneous reaction
 - d) $E_{\text{cell}}^{\circ} = 0.77 V$
- 279. The standard reduction potential of the reaction,

$$H_2O + e^- \rightarrow 1/2 H_2 + OH \text{ at } 298 \text{ K is}$$

a)
$$E^{\circ} = \frac{RT}{F} \operatorname{Iln} K_w$$

b)
$$E^{\circ} = -\frac{RT}{F} \ln[P_{H_2}]^{1/2} [OH^-]$$

c)
$$E^{\circ} = -\frac{RT}{F} \ln \frac{[p_{H_2}]^{1/2}}{[H^+]}$$

d)
$$E^{\circ} = -\frac{RT}{F} \ln K_w$$

- 280. The correct order $E_{M^{2+}/M}^{\circ}$ values with negative sign for the four successive elements Cr, Mn, Fe and Co is :

 - a) Cr > Mn > Fe > Co b) Mn > Cr > Fe > Co
- c) Cr > Fe > Mn > Co
 - d) Fe > Mn > Cr > Co
- 281. The increase in equivalent conductivity of a weak electrolyte solution with dilution is attributed to:
 - a) Increase in degree of dissociation
 - b) Increase in ionic mobility
 - c) Both (a) and (b)
 - d) None of the above
- 282. Resistance of 0.2 M solution of an electrolyte is 50 Ω . The specific conductance of the solution is 1.3 S m⁻¹. If resistance of the 0.4M solution of the same electrolyte is 260Ω , its molar conductivity is
 - a) $6250 \text{ Sm}^2 \text{ mol}^{-1}$

b) $6.25 \times 10^{-4} \, \text{Sm}^2 \, \text{mol}^{-1}$

c) $625 \times 10^{-4} \,\mathrm{Sm^2 \,mol^{-1}}$

- d) $62.5 \text{ Sm}^2 \text{ mol}^{-1}$
- 283. When electric current is passed through a cell having an electrolyte, the positive ions move towards the cathode and the negative ions towards the anode. If the cathode is pulled out of the solution:
 - a) The positive and the negative ions both will move towards the anode
 - b) The positive ions will start moving towards the anode; the negative ions will stop moving
 - c) The negative ions will continue to move towards the anode; the positive ions will stop moving
 - d) The positive ions and the negative ions will start moving randomly
- 284. Cu^+ (aq) is unstable in solution and undergoes simultaneous oxidation and reduction, according to the reaction

$$2Cu^{+}(aq) \rightleftharpoons Cu^{2+}(aq) + Cu(s)$$

choose correct E° for the above reaction if

$$E_{\text{Cu}^{2+}/\text{Cu}}^{\circ} = 0.34 \,\text{V}, E_{\text{Cu}^{2+}/\text{Cu}^{+}}^{\circ} = 0.15 \,\text{V}$$

- a) -0.38 V
- b) +0.49 V
- c) +0.38 V
- d) -0.19 V

- 285. Standard electrode potential of NHE at 298 K is
 - a) 0.05 V
- b) 0.10 V
- c) 0.50 V
- d) 0.00 V

286. Agalvanic cell is constructed using the redox reaction,

$$\frac{1}{2}H_2(g) + AgCl(s) \rightleftharpoons H^+(aq) + Cl^-(aq) + Ag(s)$$

It is represented as

- Pt | H₂(g) | HCl solution || AgNO₃ solution |
- b) $\frac{\text{Ag | AgCl}(s)|\text{KCl solution | |HCl solution|}}{|\text{H}_2(g)|\text{Pt}}$
- c) Pt | H₂(g) | KCl solution || AgCl(s) | Ag
- d) Pt | H₂(g), HCl solution | AgCl(s) | Ag
- 287. Zn $|Zn^{2+}(A = 0.1 M)| |Fe^{2+}(A = 0.01 M)| Fe$.

The emf of the above cell is 0.2905 V. Equilibrium constant for the cell reaction is

- a) $10^{0.32/0.0591}$
- b) 10^{0.32/0.0295}
- c) $10^{0.26/0.0295}$
- d) $e^{0.32/0.0295}$

288.			me as that of its conductivi	ity. The cell used can be said	
	to have cell constant equa		-) 100	1) 10	
200	a) 1	b) Zero	c) 100	d) 10	
289.	A conductivity cell has two	o platinum electrodes of 1	2 cm ² area, separated by a	a distance of 0.8 cm. The cell	
	a) 0.66cm^{-1}	b) 1.5 cm ⁻¹	c) 0.96 cm ⁻¹	d) 0.66 cm	
290.	contain respectively silve 0.216 g of Ag was deposit	er nitrate, mercuric nitrate ed. The weights of mercury	e and mercurous nitrate. A	R connected in series. These At the cathode of the cell P , of Q and R respectively are:	
291	-	-	l others from their salt solu	-	
271.	a) Al	b) Cu	c) Zn	d) Fe	
292		,	•	20 (where ions move freely	
2,2,	through a solution) at 25°		tes at minime unution in it	20 (where ions move freely	
	$\Lambda^{\circ}_{\text{CH}_3\text{COONa}} = 91.0 \text{ S cm}^2$	_			
	$\Lambda^{\circ}_{HCl} = 426.2 \text{ S cm}^2/\text{equi}$				
			calculate Λ° of an aqueous	colution of a actic acid?	
		ion/quantity one needs to	calculate A of all aqueous	solution of acetic acid?	
	a) Λ° of NaClb) Λ° of CH₃ COOK				
	-	conductance of $H^+(\lambda^{\circ}_{H^+})$			
	d) Λ° of chloroacetic acid				
293	The emf of the cell	(CICH ₂ COOH)			
275.	Ni Ni ²⁺ (1.0 M) Au^{3+} (1 0 M) Ι Διι			
	is $[E^{\circ} (Ni^{2+}/Ni) = -0.25 \text{ V}]$				
	$E^{\circ} (Au^{3+}/Au) = +1.5 \text{ V}$	allu			
	a) 2.00 V	b) 1.25 V	c) -1.25 V	d) 1 75 V	
204		-		d) 1.75 V	
294.	94. The standard reduction potential for Fe^{2+}/Fe and Sn^{2+}/Sn electrodes are -0.44 and -0.14 V respectively. For the given cell reaction, $Fe^{2+} + Sn \rightarrow Fe + Sn^{2+}$, the standard emf is				
		n cen reaction, Fe ⁻⁺ + Sn - b) — 0.42 V	\rightarrow Fe + Sn ⁻¹ , the standard \rightarrow c) -0.30 V		
205	a) 0.42 V	,	c) — 0.30 v	d) – 1.10 V	
473.	In Acell that utilises the re $Zn(s) + 2H^+(aq) \rightarrow Zn$				
	addition of H_2SO_4 to cathe				
	a) Lower the E and shift the	•			
	-	he equilibrium to the right			
	*	t the equilibrium to the rig			
	•	t the equilibrium to the left			
296.	_	-	$2Ag^{+}(aq) \rightarrow Sn^{2+}(aq) + 2$?Ag(s)?	
270.	a) Increase in size of the s	_		g(5).	
	b) Increase in the concent				
	c) Increase in the concent				
	d) None of the above				
297.	Given standard electrode	potentials			
	$Fe^{2+} + 2e^{-} \rightarrow Fe$	-			
	$Fe^{3+} + 3e^{-} \rightarrow Fe$				
	The standard electrode po				
	$Fe^{3+} + e^- \rightarrow Fe^{2+}$ is	` ,			
	a) +0.772 V	b) -0.772 V	c) +0.417 V	d) -0.414 V	
298.		-	n electrode gives an e.m.	f. of 1.66 V. The standard	
	oxidation electrode poten				
	a) – 1.66 V	b) + 1.66 V	c) - 0.83 V	d) + 0.83 V	

299. Which of the followi	ng statements is true for fue	cells?	
a) They are more eff	=	b) They are free from po	ollution
c) They run till react		d) All of the above	
		_	174, $\lambda_{\text{Cl}}^{\infty}$ = 66 and $\lambda_{\text{NH}_4\text{Cl}}^{\infty}$ =
130 S cm ² eq $^{-1}$:			11114
a) 238	b) 218	c) 198	d) 160
•	s a self protecting film of oxid	•	,
a) Na	b) Al	c) Cu	d) Au
302. The number of Farac	day's needed to reduce 4 g-e	quivalents of Cu ²⁺ to Cu met	al will be
a) 1	b) 2	c) 4	d) 8
303. The atomic weight of	of Al is 27. When a current o	of 5 faraday is passed throug	gh a solution of Al^{3+} ions, the
wt.of Al deposited is	:		
a) 27 g	b) 36 g	c) 45 g	d) 9 g
-	resentation for a cell at equi	ibrium?	
a) $\Delta G^{\circ} = -2.303 RT$	$\Gamma \log K_{eq}$.		
b) $E^{\circ} = \frac{2.303RT}{nF} \log \frac{1}{nF}$	K		
761			
c) $-\Delta G^{\circ} = RT \ln K_{eq}$	·		
d) All of the above.	TIO 1		
305. Consider the followi	-		
$E^{\circ}_{Fe^{3+}/Fe^{2+}} = +0.77$			
$E^{\circ}_{\mathrm{Sn}^{2+}/\mathrm{Sn}} = -0.14 \mathrm{V}$			
	ditions, the potential for the	reaction	
	$\Rightarrow 2Fe^{2+}(aq) + Sn^{2+}(aq) \text{ is}$		D
a) – 0.91 V	b) + 0.91 V	c) - 0.41 V	d) $+ 0.41 \text{ V}$
	usch's law the limiting value	e of equivalent conductivity	of an electrolyte A ₂ B is given
by :	Capitic EDI	ICATION	
a) $\lambda_{A^+}^{\infty} + \lambda_{B^{-2}}^{\infty}$	b) $\frac{1}{2}\lambda_{A^+}^{\infty} + \lambda_{B^{-2}}^{\infty}$	c) $\lambda_{A^+}^{\infty} + \frac{1}{2} \lambda_{B^{-2}}^{\infty}$	d) $2\lambda_{A^+}^{\infty} + \lambda_{B^{-2}}^{\infty}$
307. Standard reduction	potential of an element is eq	ual to :	
a) + 1 \times its reduction			
b) $-1 \times its standar$	d oxidation potential		
c) 0.00 V			
d) + 1 \times its standar	d oxidation potential		
	alysed by which of the follow		
a) Fe	b) Zn	c) 0 ₂	d) H ⁺
-	-		n^{-1} cm ² eq ⁻¹ . If the resistivity
		49) in 1 litre is 18.5 ohm	cm, what is the degree of
dissociation of acid?		2 60 404	D 50 50/
a) 45.9%	b) 40.2%	c) 60.4%	d) 50.7%
	ion potential E° for half reac	tions are	
$Zn = Zn^{2+} + Ze$			
$Fe = Fe^{2+} + Ze$			
The emf of the cell re			
$Fe^{2+} + Zn = Zn^{2-}$		a) +1.17 <i>V</i> /	J) 1117 U
a) - 0.35 V	b) +0.35	c) +1.17 V	d) -1.`17 V
a) Drops to zero	noved from the two half cells b) Does not change	, the voltage c) Increase gradually	d) Increase rapidly
, .	,	nd Ni electrodes are + 0.76, -	
	-	owing reaction will provide n	
5.55 and 0120 V 10		Provide i	

a) $Cu + 2 Ag^{+}(aq) \rightarrow Cu^{2+}(aq) + 2 Ag$ b) $Zn + 2 Ag^{+}(aq) \rightarrow Zn^{2+}(aq)$	+ 2 Ag
c) $H_2 + Ni^{2+}(aq) \rightarrow 2H^+(aq) + Ni$ d) $Zn + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) +$	
313. An apparatus used for the measurement of quantity of electricity is known as a :	
a) Calorimeter b) Cathetometer c) Coulometer d) colorin	meter
314. For the cell prepared from electrode A and B; Electrode A: $\operatorname{Cr}_2\operatorname{O}_7^{2-} \operatorname{Cr}^{3+}, E_{\operatorname{red}}^{\circ} = +1.33$	V and Electrode B
: Fe ³⁺ Fe ²⁺ , E_{red}° = 0.77 V. Which of the following statement is correct?	
a) The electrons will flow from B to A when connection is made	
b) The e.m.f. of the cell will be 0.56 V	
c) A will be positive electrode	
d) All of the above	
315. Which colourless gas evolves when NH ₄ Cl reacts with zinc in Adry cell battery?	
a) NH_3 b) N_2 c) H_2 d) Cl_2	
	dor of their
316. The standard E_{red}° values of A, B and C are +0.68 V, - 2.54 V, - 0.50 V respectively. The order reducing power is	iei oi uieii
reducing power is	C > 1
a) $A > B > C$ b) $A > C > B$ c) $C > B > A$ d) $B > C$. > A
317. Based on the data given below, the correct order of reducing power is: $F_{1}^{3} + (r_{1}^{2}) + r_{2}^{2} + (r_{2}^{2}) = F_{1}^{3} + (r_{2}^{2}) + (r_{2}^{2}) = F_{1}^{3} + (r_{2}^{2}) + (r_{2}^{2}) + (r_{2}^{2}) = F_{1}^{3} + (r_{2}^{2}) + (r_{2}^{2}) = F_{1}^{3} + (r_{2}^{2}) + (r_{2}^{2}) + (r_{2}^{2}) = F_{1}^{3} + (r_{2}^{2}) + (r_{2}^{2}) = F_{1}^{3} + (r_{2}^{2}) + (r_{2}^{2}) = F_{1}^{3} + (r_{2}^{2}) + (r_{2}^{2}) + (r_{2}^{2}) = F_{1}^{3} + (r_{2}^{2}) + (r_{2}^{2}) = F_{1}^{3} + (r_{2}^{2}) + (r_{2}^{2}) + (r_{2}^{2}) + (r_{2}^{2}) = F_{1}^{3} + (r_{2}^{2}) + (r$	
$Fe^{3+}(aq) + e \rightarrow Fe^{2+}(aq); E^{\circ} = +0.77 \text{ V}$	
$Al^{3+}(aq) + 3e \rightarrow Al(s); E^{\circ} = -1.66 \text{ V}$	
$Br_2(aq) + 2e \rightarrow 2Br^-(aq); E^\circ = +1.08 \text{ V}$	- 2+ -
a) $Br^- < Fe^{2+} < Al$ b) $Fe^{2+} < Al < Br^-$ c) $Al < Br^- < Fe^{2+}$ d) $Al < Br^-$	
318. Small quantities of solutions of compounds <i>TX</i> , <i>TY</i> and <i>TZ</i> are put into separate test tubes	_
and Z solutions. TX does not react with any of these. TY reacts with both X and Z.TZ react	ts with X. The
decreasing order of ease of oxidation of the anions X^-, Y^-, Z^- is	
a) Y^-, Z^-, X^- b) Z^-, X^-, Y^- c) Y^-, X^-, Z^- d) X^-, Z^-	·, Y -
319. What flows in the internal circuit of Agalvanic cell?	
a) Ions b) Electrons c) Electricity d) Atoms	
320. The standard electrode potential of Zn^{2+}/Zn and Ag^{+}/Ag are -0.763 V and $+0.799$ V m	respectively. The
standard potential of the cell is	
a) 1.56 V b) -1.56 V c) 0.036 V d) -0.03	36 V
321. Consider the following E° values	
$E^{\circ}_{Fe^{3+}/Fe^{2+}} = +0.77 V$	
$E^{\circ}_{\operatorname{Sn}^{2+}/\operatorname{Sn}} = -0.14 V$	
Under standard conditions the potential for the reaction	
$Sn(s) + 2Fe^{3+}(aq) \rightarrow 2Fe^{2+}(aq) + Sn^{2+}(aq)$ is	
a) 1.68 V b) 1.40 V c) 0.91 V d) 0.63 V	
322. The standard electrode potential for the half – cell reactions are	
$Zn^{2+} + 2e^{-} \rightarrow Zn; E^{\circ} = -0.76 \text{ V}$	
$Fe^{2+} + 2e^{-} \rightarrow Fe; E^{\circ} = -0.44 \text{ V}$	
The emf of the cell reaction,	
$Fe^{2+} + Zn \rightarrow Zn^{2+} + Fe$ is	
a) -0.32 V b) -1.20 V c) +1.20 V d) +0.32	V
323. The reduction potential of hydrogen half-cell will negative if	•
a) $p(H_2) = 1$ atm and $[H^+] = 2.0 \text{ M}$ b) $p(H_2) = 1$ atm and $[H^+] = 1.0 \text{ M}$	
c) $p(H_2) = 2$ atm and $[H^+] = 1.0$ M d) $p(H_2) = 2$ atm and $[H^+] = 2.0$ M	
324. Give the products available on the cathode and the anode respectively during the electroly	vsis of an
aqueous solution of MgSO ₄ between inert electrodes.	, 515 01 411
	and SO ₂ (g)
325. Which of the following statements is not applicable to electrolytic conductors?	202(6)
a) A single stream of electrons flows from cathode to anode	

- b) Show a positive temperature coefficient for conductance c) New products show up at the electrodes d) Ions are responsible for carrying the current 326. Which of the following expressions correctly represents the equivalent conductance at infinite dilution of $Al_2(SO_4)_3$. Given that $\Lambda_{Al^{3+}}^{\infty}$ and $\Lambda_{SO^{2-}}^{\infty}$ are the equivalent conductances at infinite dilution of the respective ions?
- a) $2\Lambda_{Al^{3+}}^{\infty} + 3\Lambda_{SO_4^{2-}}^{\infty}$ b) $2\Lambda_{Al^{3+}}^{\infty} + \Lambda_{SO_4^{2-}}^{\infty}$ c) $(\Lambda_{Al^{3+}}^{\infty} + \Lambda_{SO_4^{2-}}^{\infty}) \times 6$ d) $\frac{1}{2}\Lambda_{Al^{3+}}^{\infty} + \frac{1}{2}\Lambda_{SO_4^{2-}}^{\infty}$

- 327. Conductivity of a strong electrolyte
 - a) Decreases on dilution

- b) Increases on dilution
- c) Does not change considerably on dilution
- d) Depends on density
- 328. Which of the following compounds will not undergo decomposition on passing electricity through aqueous solution?
 - a) Sugar
- b) Sodium acetate
- c) Sodium chloride
- d) Sodium bromide

- 329. Which loses charge at cathode?
 - a) Ions
 - b) Cations
 - c) Anions
 - d) Both anions and cations
- 330. An electrochemical cell is set up as follows

(H₂, 1 atm)Pt Emf

of this cell will not be zero because

- The pH of 0.1 M HCl and 0.1 M acetic acid is a) not the server
- b) Acids used in two compartments are different
- c) Emf of a cell depends on the molarities of acids used
- d) The temperature is constant
- 331. Which of the following reactions cannot be Abase for electrochemical cell?
 - a) $H_2 + O_2 \rightarrow H_2O$
 - b) $AgNO_3 + Zn \rightarrow Zn (NO_3)_2 + Ag$
 - c) $AgNO_3 + NaCl \rightarrow AgCl \downarrow + NaNO_2$

d)
$$\frac{\text{KMnO}_4 + \text{FeSO}_4 + \text{H}_2\text{SO}_4 \rightarrow}{\text{K}_2\text{SO}_4 + \text{Fe}_2(\text{SO}_4)_3 + \text{MnSO}_4 + \text{H}_2\text{O}}$$

- 332. The emf of a galvanic cell, with electrode potentials of silver = +0.80 V and that of copper = +0.34 V, is
 - a) + 0.46 V
- b) + 0.66 V
- c) + 0.86 V
- d) 0.66 V
- 333. The standard oxidation potentials of Zn and Ag in water at 25°C are,

$$\operatorname{Zn}(s) \longrightarrow \operatorname{Zn}^{2+} + 2e$$
; $E^{\circ} = 0.76 \,\mathrm{V}$

$$Ag(s) \rightarrow Ag^+ + e; \quad E^\circ = -0.80 \text{ V}$$

Which reaction actually takes place?

- a) $\operatorname{Zn}(s) + 2\operatorname{Ag}^+(aq) \longrightarrow \operatorname{Zn}^{2+}\operatorname{Ag}(s)$
- b) $Zn^{2+} + 2Ag^{+}(s) \rightarrow 2Ag^{+}(aq) + Zn(s)$
- c) $\operatorname{Zn}(s) + 2\operatorname{Ag}(s) \longrightarrow \operatorname{Zn}^{2+}(aq) + \operatorname{Ag}^{+}(aq)$
- d) $\operatorname{Zn}^{2+}(aq) + \operatorname{Ag}^{+}(aq) \longrightarrow \operatorname{Zn}(s) + \operatorname{Ag}(s)$
- 334. Amount of electricity that can deposit 108 g of silver from AgNO₃ solution is

b) 1 A

c) 1 C

d) None of these

- 335. Also the [H⁺] for problem 9 using the same data is:
 - a) 0.00133 M
- b) 0.133 *M*
- c) 0.0133 M
- d) None of these
- 336. A hydrogen electrode placed in a buffer solution of CH_3COONa and acetic acid in the ratio's x:y and y:xhas electrode potential values E_1 volt and E_2 volt respectively at 25°C. The pKa values of acetic acid is $(E_1 \text{ and } E_2 \text{ are oxidation potential})$:

	b) $Cr_2O_7^{2-}$ can be used in aqueous HCl		
	c) MnO_4^- can be used in aqueous H_2SO_4		
	d) $Cr_2O_7^{2-}$ can be used in aqueous H_2SO_4		
349.	The standard H electrode is written as:		
	a) Pt, H_2 , $H^+(a=1)$		
	b) $PtH_2/H^+(a=1)$		
	c) $PtH_2(g)(1 \text{ atm})/H^+(a = 1)$		
	d) None of the above		
350.	Standard electrode potential of cell H ₂ H ⁺ Ag ⁺	Ag is	
	a) 0.8 V b) -0.8 V	c) -1.2 V	d) 1.2 V
351.	A dilute solution of Li ₂ SO ₄ is electrolyzed. The pro	ducts formed at the anod	e and cathode, respectively are
	:		
	a) S and Li b) O ₂ and Li	c) SO_2 and O_2	d) O_2 and H_2
352.	3 F electricity was passed through an aqueous solu		
	Wt. = 56) deposited at the cathode (in g) is		
	a) 65 b) 84	c) 112	d) 168
353.	5 A is passed through a solution of zinc sulphate for	•	•
	cathode		
	a) 4.065 g b) 8.065 g	c) 16.065 g	d) 32.065 g
354.	Saturated solution of KNO ₃ is used to make 'salt-br		.,
	a) Velocities of both K^+ and NO_3^- are nearly the sai		
	b) Velocity of K ⁺ is greater than that of NO ₃		
	c) Velocity of NO_3^- is greater than that of K^+		
	d) KNO ₃ is highly soluble in water		
355	The calomel electrode is a:		
0001	a) Standard hydrogen electrode		
	b) Reference electrode	CATION	
	b) Reference electrode c) Platinum electrode	CALION	
	d) Mercury electrode		
356	Calculate the emf of the cell		
5501	Cu (s) $ \text{Cu}^{2+}(aq) \text{Ag}^+(aq) \text{Ag}(s)$		
	Given,		
	$E_{\text{Cu}^{2+}/\text{cu}}^{\circ} = +0.34 V , E_{\text{Ag}^{+}/\text{Ag}}^{\circ} = 0.80 V ,$		
	a) +0.46 V b) +1.14 V	c) +0.57 V	d) -0.46 V
357.	The electrolytic conductance is a direct measure of		
	a) Resistance b) Potential	c) Dissociation	d) Concentration
358.	On the basis of electrochemical theory of aqueous		_
	a) $O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(l)$	b) $H_2(g) + 20H^-(aq)$	
	c) $Fe(s) \to Fe^{2+}(aq) + 2e^{-}$	d) $Fe^{2+}(aq) \rightarrow Fe^{3+}(aq)$	$(q) + e^{-}$
359.	The resistance of $\frac{N}{10}$ solution is found to be 2.5 ×	$10^3\Omega$. The equivalent con	ductance of the solution is
	$(cell constant = 1.25 cm^{-1})$	-	
	a) $2.5\Omega^{-1}$ cm ² equiv ⁻¹	b) $5.0\Omega^{-1}$ cm ² equiv ⁻¹	
	c) $2.5\Omega^{-1}$ cm ⁻² equiv ⁻¹	d) $5.0\Omega^{-1}$ cm ⁻² equiv	
360	In a concentration cell :	a) 5.022 cm equiv	
300.			
	a) Two electrodes are of different elements b) Two electrolytic solutions of the same electrolytic	to but having different com	econtrations are used
	b) Two electrolytic solutions of the same electroly		
	c) Electrolyte of one strength but electrodes of two	o umerent concentrations	are useu
	d) Both (b) and (c)		

a) MnO_4^- can be used in aqueous HCl

				Gpius Eaucation
361.		-	calculate ΔG° , in kJ, for the	indicated reaction
		$4H_2O(l) \to 5Ce^{3+}(aq) + N$		
	* ' *'	$5e^- \to Mn^{2+}(aq) + 4H_2O(aq)$	E(E) = E(E) = 0	
	$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$			
	a) -36.24	b) -48.25	-	d) -19.65
362.		-	sulphate, 0.635 g of copper	was deposited at cathode.
	The amount of electricity		> 0.4 = 0	22 4 6 6 7
0.40	a) 1930	b) 3860	c) 9650	d) 4825
		-	into aqueous solution of the	
	` , , ,		servation is probably incori	rect?
	a) $Y + \text{Salt of } X = \text{No action}$			
	b) $Y + \text{Salt of } Z = \text{Nothing}$			
	c) Z + Salt of X = X + Salt			
264	d) Z + Salt of X = No action			J l
	a) $Pb^{2+} + SO_4^{2-} \rightarrow PbSO_4$		tion at anode is represented	a by :
	*	<u>*</u>		
	b) $PbSO_4 + H_2O \rightarrow PbO_2$ c) $Pb \rightarrow Pb^{2+} + 2e$	$+30_4^{-}+2\Pi$		
	d) $Pb^{2+} + 2e \rightarrow Pb$			
265	Which of the formula give	n holovy is correct?		
				d) All of these
	a) $\kappa = \frac{1}{R} \times \frac{1}{a}$	b) $\kappa = C \times \frac{1}{a}$	c) $\Lambda_{eq} = \kappa \times V_{\text{in mL}}$	u) All of these
366.	The number of faraday re	quired to generate 1 g-ator	n of Mg from MgCl ₂ is:	
	a) 1	b) 2	c) 3	d) 4
367.	During the electrolysis of	molten NaCl solution, 230	g of sodium metal is deposi	ted on the cathode, then
	how many moles of chlori	ne will be obtained at anoc	le?	
	a) 10.0	b) 5.0	c) 35,5	d) 17.0
368.	1.05 g of lead ore contain	ing impurity of Ag was diss	solved in HNO_3 and the vol	ume was made 350 mL. An
	Ag electrode was dipped i	n the solution. $Pt(H_2) H^+$	(1 M) Ag ⁺ Ag	
	The E_{cell} is 0.503 V at 298	K. The percent of lead in t	the ore is $\left(E_{Ag^+ Ag}^{\circ}=0.80\mathrm{V}\right)$	·)
	a) 0.033%	b) 0.050%	c) 0.066%	d) 0.13%
369		•	•	Tho cm 2 eq $^{-1}$.If equivalent
0071	•	•		e temperature. What is its
	degree of dissociation?	at illilite dilution is 550	inno em eq at the sam	e temperaturer what is its
	a) 0.04514	b) 0.4514	c) 4.514	d) 0.004514
370.	•	•	ogen electrodes as represer	
	-	9		,
	Pt; $\frac{-}{2}$ H ₂ (g) H'(10 ° M)	H ⁺ (0.001 <i>M</i>) 1/2H ₂ (g)Pt?		
	a) — 0.295 V	b) — 0.0591 V	c) 0.295 V	d) 0.0591 V
371.	The standard emf for the	given cell reaction, $Zn + Cn$	$u^{2+} \rightarrow Cu + Zn^{2+}$ is 1.10 V a	at 25°C. The emf for the cell
	reaction, when 0.1 M Cu ²¹	and 0.1 M Zn ²⁺ solutions	are used, at 25°C, is	
	a) 1.10 V	b) -1.10 V	c) 2.20 V	d) -2.20 V
			te test tubes and a strip o	f copper is placed in each.
	Which solution finally tur			
	a) $Pb(NO_3)_2$	b) $Zn(NO_3)_2$	c) AgNO ₃	d) $Cd(NO_3)_2$
373.				cells containing solutions of
		= = =	If 0.3 g of nickel was dep	osited in the first cell, the
	amount of chromium depo	osited is :		
	(at. wt. Ni = 59 , Cr = 52)	1204		D 0 6
	a) 0.1 g	b) 0.17 g	c) 0.3 g	d) 0.6 g

				Gplus Education
374.	The molar conductivities	of KCl, NaCl and KNO ₃ are	152, 128 and 111 S cm ² mo	l ^{–1} respectively. What is
	the molar conductivity of	NaNO ₃ ?		
	a) $101 \text{S cm}^2 \text{mol}^{-1}$	b) 87 S cm ² mol ⁻¹	c) $-101 \text{S cm}^2 \text{mol}^{-1}$	d) -391 S cm ² mol ⁻¹
375.	The degree of ionisation of	of weak electrolytes is influ	enced by :	
	a) Temperature	·	·	
	b) Concentration of elect	rolyte		
	c) Nature of solvent	•		
	d) All of the above			
376,	•	cell potential of a given ele	ctrochemical cell is 1.92 V.	Find the value of x .
	$Mg(s) Mg^{2+}(aq) \times M $	-		
		$87 V E^{\circ} \text{ Fe/ Fe}^{2+}(aq) = 0$	45 <i>V</i>	
	a) $x = 0.01 M$, , , ,	b) $x < 0.01 M$	
	c) $x > 0.01 M$		d) x cannot be predicted	
377.	The corrosion of iron obje	ect is favoured by :	•	
	a) Presence of H ⁺ ion	•		
	b) Presence of moisture in	n air		
	c) Presence of impurities	in iron object		
	d) All of the above			
378.	The cathodic reaction of a	dry cell is represented by		
	$2MnO_2(s) + Zn^2 + 2e^-$	\rightarrow ZnMn ₂ O ₄ (s)		
	If, there are 8 g of MnO ₂ i	n the cathodic compartme	nt then the time for which t	the dry cell will continue to
	give a current of 2 mA is			
	a) 25.675 day	b) 51.35 day	c) 12.8 day	d) 6.423 day
379.	The standard emf of the c	ell,		
	$Cd(s) \mid CdCl_2(aq)(0.1 M)$	$I) \mid\mid AgCl(s) \mid Ag(s)$		
	In which the cell reaction	is		
	Cd(s) + 2AgCl(s)			
	\rightarrow 2 Ag (s) + Cd ²⁺ (aq)		CATION	
	is 0.6915 V at 0°C and 0.6	5753 V at 25 °C . The enthal	py change of the reaction a	t 25°C is
	a) - 176 kJ	b) -234.7 kJ	c) +123.5 kJ	d) -167.26kJ
380.	The factor which is not af	fecting the conductivity of		
	a) Temperature	b) Dilution	c) Nature of electrolyte	d) None of these
381.	——————————————————————————————————————	otential for the half-cell ha	ving reaction	
	$NO_3^-(aq) + 2H^+(aq) + e^-$			
	Is 0.78 V. What will be th	=	half-cell is a neutral soluti	
	a) 0.78 V	b) 0.89 V	c) 0.36 V	d) 0.59 V
382.			$(NO_3)_2$ and molten Al $(NO_3)_2$	
		n electricity is passed 2.7 g	Al is deposited on electrod	e. Calculate the weight of Cu
	deposited on cathode.			
	[Cu = 63.5; Al = 27.0 g m]			
	a) 190.5 g	b) 9.525 g	c) 63.5 g	d) 31.75 g
383.	1 volt coulomb is:			
			c) An unit of energy	d) All of these
384.				e where $OA = 0.34 \text{ V}$, then
	electrode potential of the	half cell of Cu $ Cu^{2+}(0.1 M) $) will be :	

a)
$$-0.34 + \frac{0.0591}{2}$$
 V b) $0.34 + 0.0591$ V

c) 0.34 V

d) None of these

385. If ϕ denotes standard reduction potential, which is true:

a)
$$E_{\text{cell}}^{\circ} = \phi_R - \phi_L$$

b)
$$E_{\text{cell}}^{\circ} = \phi_L + \phi_R$$

c)
$$E_{\text{cell}}^{\circ} = \phi_L - \phi_B$$

c)
$$E_{\text{cell}}^{\circ} = \phi_L - \phi_R$$
 d) $E_{\text{cell}}^{\circ} = (\phi_L + \phi_R)$

386. A substance that will reduce Ag⁺ to Ag but will not reduce Ni²⁺ to Ni is:

d) Al

387. The correct order of the mobility of the alkali metal ions in aqueous solution is:

a)
$$K^{+} > Rb^{+} > Na^{+} > Li^{+}$$

b)
$$Rb^{+} > K^{+} > Na^{+} > Li^{+}$$

c)
$$Li^+ > Na^+ > K^+ > Rb^+$$

d)
$$Na^+ > K^+ > Rb^+ > Li^+$$

388. Calculate the volume of H₂ gas at NTP obtained by passing 4 A through acidified H₂O for 30 min is

d) 0.836 L

389. Resistance of a conductivity cell filled with a solution of an electrolyte of concentration 0.1 M is 100Ω . The conductivity of this solution is 1.29 S m⁻¹. Resistance of the same cell when filled with 0.2 M of the same solution is 520 Ω . The molar conductivity of 0.02 M solution of the electrolyte will be

a)
$$124 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$$

b)
$$1240 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$$

c)
$$1.24 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$$

d) $12.4 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$

390. Ionic mobility of Ag⁺ at infinite dilution is:

$$(\lambda_{Ag^{+}}^{0} = 5 \times 10^{-3} S \text{ m}^{2} \text{ eq}^{-1})$$

a) 5.2×10^{-8} b) 2.4×10^{-8} c) 1.52

a)
$$5.2 \times 10^{-8}$$

b)
$$2.4 \times 10^{-8}$$

391. The number of electrons passing per second through a cross-section of copper wire carrying 10^{-6} ampere

a)
$$6.2 \times 10^{23}$$

b)
$$6.2 \times 10^{12}$$

c)
$$6.2 \times 10^{10}$$

d) None of these

392. The amount of substance deposited by the passage of 1 A of current for 1 s is equal to

a) Equivalent mass

b) Molecular mass

c) Electrochemical equivalent

d) Specific equivalent

393. 9.65 C electric current is passed through fused anhydrous MgCl₂. The magnesium metal thus obtained is completely converted into a Grignard reagent. The number of moles of Grignard reagent obtained is

a)
$$5 \times 10^{-4}$$

b)
$$1 \times 10^{-4}$$

c)
$$5 \times 10^{-5}$$

d)
$$1 \times 10^{-5}$$

394. Which one is correct relation:

a)
$$\Delta S = \left(\frac{\partial E}{\partial T}\right)_{P} \times nF$$

b)
$$\left(\frac{\partial E}{\partial T}\right)_P = \frac{\Delta G - \Delta H}{T}$$

c)
$$\left(\frac{\partial E}{\partial T}\right)_P = \frac{\partial (\Delta S)}{\partial T}$$

d)
$$-\Delta S = \left(\frac{\partial E}{\partial T}\right)_P \times nF$$

395. A current is passed through two voltameters connected in series. The first voltameter contains XSO₄ (aq) while the second voltameter contains Y_2SO_4 (aq). The relative atomic masses ox X and Y are in the ratio of 2 : 1. The ratio of the mass of *X* liberated to the mass of *Y* liberated is :

			Gplus Education
a) 1:1	b) 1:2	c) 2:1	d) None of these
396. Given, standard elect	•		
$Fe^{2+} + 2e^- \rightarrow Fe, E^\circ$			
$Fe^{3+} + 3e^- \rightarrow Fe, E^\circ$	= -0.036 V		
The standard electro	de potential $\left(E^{\circ} \right)$ for		
$Fe^{3+} + e^- \rightarrow Fe^{2+}$ is			
a) + 0.771 V	b) — 0.771 V	c) $+ 0.417 \text{ V}$	d) - 0.417 V
397. The standard cell po	tential for the cell is : Zn Zn ²⁺	(1 <i>M</i>) Cu ²⁺ (1 <i>M</i>) Cu	
$[E^{\circ} \text{ for } Zn^{2+}/Zn = -$	-0.76 ; E° for $Cu^{2+}/Cu = +0.34$]	
a) $-0.76 + 0.34 = -$	-0.42 V		
b) $-0.34 - (-0.76)$	= +0.42 V		
c) $0.34 - (-0.76) =$	+1.10 V		
d) $-0.76 - (+0.34)$	= -1.10 V		
398. The speed of migrat	tion of Ag^+ ion and NO_3^- ion a	are 0.00057 cm sec^{-1} and 0	$0.00063 \text{ cm sec}^{-1} \text{ at infinite}$
dilution. The equival	ent conductivity of AgNO ₃ at in	ifinite dilution is:	
a) 140.2	b) 130.1	c) 120.8	d) 115.8
399. In electrochemical co	orrosion of metals, the metal u	ndergoing corrosion :	
a) Acts as anode	b) Acts as cathode	c) Undergoes reduction	d) None of these
400. Which does not get o	xidised by bromine water?		
a) Fe ²⁺ to Fe ³⁺	b) Cu ⁺ to Cu ²⁺	c) Mn ²⁺ to MnO ₄	d) Sn ²⁺ to Sn ⁴⁺
401. 3 faraday of electrici	ty is passed through molten A	l_2O_3 , aqueous solution of C	uSO ₄ and molten NaCl taken
in three different ele	ectrolytic cells. The amount of	Al, Cu and Na deposited at	t the cathodes will be in the
ratio of :	< L	>	
a) 1 mole : 2 mole : 3	3 mole		
b) 3 mole : 2 mole : 1	mole		
c) 1 mole : 1.5 mole :	3 mole		
d) 1.5 mole : 2 mole :		CATTONI	
402. In Agalvanic cell, the	THE COURSE OF SCHOOL SECTION AND ADDRESS OF THE COURSE OF	CAHON	
a) Anode to cathode	J	b) Cathode to anode thro	•
c) Anode to cathode	c) Anode to cathode through the external circuit d) Cathode to anode through the external circuit		
403. Which of the following reactions is correct for a given electrochemical cell at 25 $^{\circ}$ C?			
	$ \operatorname{Cl}^-(aq) \operatorname{Cl}_2(g) \operatorname{Pt}$		
	$(1) \rightarrow 2Cl^{-}(aq) + Br_2(g)$	b) $Br_2(g) + 2Cl^-(aq) -$,
, - 10 10.	\rightarrow 2Br ⁻ (aq) + 2Cl ⁻ (aq)	d) 2Br ⁻ (aq) + 2Cl ⁻ (aq	$) \rightarrow Br_2(g) + Cl_2(g)$
404. Which gains electron			_
a) H ⁺	b) Na ⁺	c) K ⁺	d) Mg ²⁺
	s, one containing acidified fer		
	The ratio of iron deposited a	t cathodes in the two cells	s when electricity is passed
through the cells wil			
a) 3:1	b) 2 : 1	c) 1:1	d) 3:2
	uctivity of NH ₄ OH, i.e., $\mathring{\Lambda}_{m}$ (N	(H_4OH) is equal to :	
	$\Lambda_{m}(NH_{4}Cl) - \Lambda_{m}(HCl)$		
b) $\mathring{\Lambda}_{m}(NH_{4}Cl) + \mathring{\Lambda}_{n}$	$_{\rm m}$ (NaOH) $ \mathring{\Lambda}$ $_{\rm m}$ (NaCl)		

407. Given:

c) $\mathring{\Lambda}_{m}(NH_{4}Cl) + \mathring{\Lambda}_{m}(NaCl) - \mathring{\Lambda}_{m}(NaOH)$ d) $\mathring{\Lambda}_{m}$ (NaOH) + $\mathring{\Lambda}_{m}$ (NaCl) - $\mathring{\Lambda}_{m}$ (NH₄Cl)

i) $Cu^{2+} + 2e^{-} \rightarrow Cu$, $E^{\circ} = 0.337 \text{ V}$ ii) $Cu^{2+} + e^{-} \rightarrow Cu^{+}$, $E^{\circ} = 0.153 \text{ V}$

Electrode potential, E° for the reaction,

 $Cu^+ + e^- \rightarrow Cu$, will be: b) 0.52 V c) 0.90 V d) 0.30 V a) 0.38 V 408. The reaction taking place at anode when an aqueous solution of CuSO₄ is electrolysed using inert Pt electrode: a) $2SO_4^{2-} \rightarrow S_2O_3^{2-} + 2e$ b) $Cu^{2+} + 2e \rightarrow Cu$ c) $2H_2O \rightarrow O_2 + 4H^+ + 4e$ d) $2H^+ + 2e \rightarrow H_2$ 409. Deduce from the following E° values of half cells, what combination of two half cells would result in a cell with the largest potential? i) $A^{3-} \rightarrow A^{2-} + e$; $E^{\circ} = 1.5 \text{ V}$ $E^{\circ} = -2.1 \text{ V}$ $E^{\circ} = +0.5 \text{ V}$ ii) $B^{2+} + e \rightarrow B^{+}$; iii) $C^{2+} + e \rightarrow C^+$; iv) $D \to D^{2+} + 2e$; $E^{\circ} = -1.5 \text{ V}$ c) (ii) and (iv) a) (i) and (ii) b) (i) and (iv) d) (iii) and (iv) 410. An ion is reduced to the element when it absorbs 6×10^{20} electrons. The number of equivalents of the ion b) 0.01 d) 0.0001 c) 0.001 a) 0.10 411. The standard e.m.f. of a galvanic cell can be calculated from : a) The size of the electrode b) The pH of the solution c) The amount of metal in the anode d) The E° values of the two half cells 412. The charge in coulomb on Cu^{2+} ion is : b) 2.3×10^{-12} a) 3.2×10^{-19} 413. $\operatorname{Zn}^{2+} + 2e^{-} \to \operatorname{Zn}(s), E^{\circ} = -0.76$ $\text{Fe}^{3+} + e^{-} \rightarrow \text{Fe}^{2+}, E^{\circ} = -0.77$ $Cr^{3+} + 3e^{-} \rightarrow Cr, E^{\circ} = -0.79$ $H^+ + e^- \rightarrow \frac{1}{2} H_2, E^\circ = 0.00$ Strongest reducing agent is c) Fe^{2+} b) Zn d) Cr a) H_2 414. The standard reduction potentials at 298 K for the following half reactions are given against each $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s); \quad E^{\circ} = -0.762 V$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s); \quad E^{\circ} = -0.740 V$ $2H^{+}$ $(aq) + 2e^{-} \rightarrow H_{2}(g); E^{\circ} = 0.00 V$ $Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq); \quad E^{\circ} = +0.762 V$ The strongest reducing agent is a) Zn (s) b) Cr (s) c) $H_2(g)$ d) $Fe^{2+}(aq)$ 415. Strong electrolytes are those which b) Dissolve readily in water a) Conduct electricity d) Completely dissociate into ions at all dilutions c) Dissociate into ions at high dilution 416. The cell reaction of Acell is

$$Mg(s) + Cu^{2+}(aq) \rightarrow Cu(s) + Mg^{2+}(aq)$$
.

If the standard reduction potentials of Mg and Cu are - 2.37 and + 0.34 V respectively. The emf of the cell is

a) 2.03 V

b) -2.03 V

c) +2.71 V

d) -2.71 V

417. Consider the following reaction:

$$2Ag^{+}C_{6}H_{12}O_{6} + H_{2}O \rightarrow 2Ag(s) + C_{6}H_{12}O_{7} + 2H^{+}$$

When ammonia is added to the solution, pH is raised to 11. Which half-cell reaction is affected by pH and

by how much?

$$Ag^+ + e^- \rightarrow Ag; E_{red}^{\circ} = 0.8 \text{ V}$$

$$C_6H_{12}O_6 + H_2O \rightarrow C_6H_{12}O_7 + 2H^+ + 2e^-; E_{red}^{\circ} = -0.05 \text{ V}$$

$$Ag(NH_3)_2^+ + e^- \rightarrow Ag(s) + NH_3; E_{red}^{\circ} = 0.337 V$$

- a) $E_{\text{oxid.}}^{\circ}$ will increase by a factor of 0.65 from $E_{\text{oxid.}}^{\circ}$ b) $E_{\text{oxid.}}^{\circ}$ will decrease by a factor of 0.65 from $E_{\text{oxid.}}^{\circ}$
- c) $E_{\text{red.}}^{\circ}$ will increase by a factor of 0.65 from $E_{\text{red.}}^{\circ}$ d) $E_{\text{red.}}^{\circ}$ will decrease by a factor of 0.65 from $E_{\text{red.}}^{\circ}$
- 418. Which process occurs in the electrolysis of aqueous solution of nickel chloride at nickel anode?

a)
$$Ni^{2+} + 2e \rightarrow Ni$$

b)
$$2H^+ + 2e \rightarrow H_2$$

c)
$$2Cl^- \rightarrow Cl_2 + 2e$$

d) Ni
$$\rightarrow$$
 Ni²⁺ + 2e

- 419. A solution containing one mole per litre of each Cu(NO₃)₂, AgNO₃, Hg₂(NO₃)₂ and Mg(NO₃)₂ is being electrolysed by using inert electrodes. The values of standard electrode potentials in volts (reducing potentials) are $Ag/Ag^{+} = +0.80, 2Hg/Hg^{2+} = +0.79, Cu/Cu^{2+} = +0.34, Mg/Mg^{2+} = -2$ With increasing voltage, the sequence of deposition of metals on the cathode will be
 - a) Ag, Hg, Cu
- b) Cu, Hg, Ag
- c) Ag, Hg, Cu, Mg
- d) Mg, Cu, Hg, Ag

- 420. The metal that does not displace hydrogen from an acid is
 - a) Ca

b) Al

- d) Hg
- 421. For an electrolyte AxBy, the molar conductivity at infinite dilution can be given by :

a)
$$\Lambda_{\rm M}^{\circ} = x \lambda^{\circ} A^{Y+} + y \lambda^{\circ} B^{X-}$$

b)
$$\Lambda_{\text{M}}^{\circ} = \frac{1}{x} \lambda^{\circ} A^{Y+} + \frac{1}{y} \lambda^{\circ} B^{X-}$$

c)
$$\Lambda_{\text{M}}^{\circ} = \frac{1}{y} \lambda^{\circ} A^{Y+} + \frac{1}{x} \lambda^{\circ} B^{X-}$$

d)
$$\Lambda_{\rm M}^{\circ} = \lambda^{\circ} A^{Y+} + \lambda^{\circ} B^{X-}$$

- 422. `for Sn^{4+}/Sn^{2+} couple is + 0.15 V and that for the Cr^{3+}/Cr couple is 0.74 V. These two couples in their standard state are connected to make a cell. The cell potential will be:
 - a) + 1.83 V
- b) + 1.19 V
- c) + 0.89 V
- d) + 0.18 V
- 423. The standard reduction potentials for Zn^{2+}/Zn , Ni^{2+}/Ni and Fe^{2+}/Fe are -0.76, -0.23 and -0.44 V respectively. The reaction $X + Y^{2+} \longrightarrow X^{2+} + Y$ will be spontaneous when :
 - a) X = Ni, Y = Zn
- b) X = Fe, Y = Zn c) X = Zn, Y = Ni
- d) X = Ni, Y = Fe
- 424. Given that $E_{\text{Fe}^{3+}|\text{Fe}}^{\circ}$ and $E_{\text{Fe}^{3+}|\text{Fe}}^{\circ}$ are $-0.36\,\text{V}$ and $-0.439\,\text{V}$, respectively. The value of $E_{\text{Fe}^{3+}|\text{Fe}}^{\circ}$ would

a)
$$(-36 - 0.439)$$
V

b)
$$[3(-0.36) + 2(-0.439)]V$$

c)
$$(-0.36 + 0.439)$$
V

d)
$$[3(-0.36) - 2(-0.439)]V$$

425. The standard emf for the cell reaction,

$$2Cu^+(aq) \rightarrow 2Cu(s) + Cu^+(aq)$$

is +0.36 V at 298 K. The equilibrium constant of the reaction is

a)
$$5 \times 10^{6}$$

b)
$$1.4 \times 10^{12}$$

c)
$$7.4 \times 10^{12}$$

d) 1.2×10^6

- 426. Electrolytic conduction is due to migration of:
 - a) Protons
- b) Electrons
- c) Ions

- d) All of these
- 427. the amount of sodium deposited by 5 ampere current for 10 minute from fused NaCl is:
 - a) 0.715 g
- b) 71.5 g
- c) 5.17 g
- d) 0.517 g

- 428. Which of the following reactions is used to make a fuel cell?
 - a) $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$
 - b) $2\text{Fe}(s) + O_2(g) + 4\text{H}^+(aq) \rightarrow 2\text{Fe}^{2+}(aq) + 2\text{H}_2O(l)$
 - c) $Pb(s) + PbO_2(s) + 2H_2SO_4(aq) \rightarrow 2PbSO_4(s) + H_2O(l)$
 - d) $Cd(s) + 2Ni(OH)_3(s) \rightarrow CdO(s) + 2Ni(OH)_2 + 2H_2O(l)$
- 429. When 1 F of electricity is passed through acidulated water, O2 evolved is
 - a) 11.2 dm³
- b) $5.6 \, dm^3$
- c) 22.4 dm^3
- d) $1.0 \, dm^3$

	or the decomposition of Al ₂ O ₃ a	t 500°C is as follows :	·
$\frac{2}{3}$ Al ₂ O ₃ $\rightarrow \frac{4}{3}$ Al +	02;		
$\Delta_r G = +960 \text{ kJ m}$			
·		cic reduction of alumini	um oxide (Al ₂ O ₃) at 500°C is at
least :	, and the second se		2 3/
a) 4.5 V	b) 3.0 V	c) 2.5 V	d) 5.0 V
431. Which one will libe	•	,	,
a) HI	b) I ₂	c) Cl ₂	d) SO ₂
432. In a galvanic cell, the		, 2	, ,
-	le through the external circuit	b) Anode to cathode	through the solution
=	le through the external circuit	d) Cathode to anode t	_
•	_	•	ticular temperature and dilution
because :	G	•	•
a) mol. wt. of HCl <	mol. wt. of NaCl		
b) $u_{H^+} > u_{Na^+} (u)$	is speed of ion)		
c) HCl is acid	•		
d) Ionisation of HC	l is more than NaCl		
-		be obtained by the elect	rolytic decomposition of 90 g of
water will be:	, ,	·	
a) 1	b) 2.5	c) 5	d) 9
435. More electropositi	ve elements have :	•	-
a) Positive reducti	on potential		
b) Tendency to gai	n electrons	>	
c) Negative reduct	ion potential		
d) Negative oxidat	ion potential		
436. Al_2O_3 is reduced by	oy electrolysis at low potentials	and high currents. If 4	0.0×10^4 amperes of current is
passed through m	olten ${ m Al_2O_3}$ for 6 hours, what n	nass of aluminium is pro	oduced? (Assume 100% current
efficiency. At mass	of Al = 27 g mol^{-1})	CAHON	
a) $1.3 \times 10^4 \text{g}$	b) $9.0 \times 10^3 \text{g}$	c) $8.05 \times 10^4 \mathrm{g}$	d) 2.4×10^5 g
437. The reaction,			
$\frac{1}{-H_{*}(a) + \Delta a Cl(a)}$	$\rightarrow H^+ aq) + Cl^-(aq) + Ag(s)$		
۷			
Occurs in the galva			
a) $Pt/H_2(g)$ KCl (so	,,, ,,,,	b) Pt/H ₂ (g) HCl(sol)	
c) Pt/H ₂ (g) HCl(so		d) Ag/AgCl(s)KCl(sol	
	ving ions can be replaced by H ⁺	inos when H ₂ gas is bub	bled through the solutions
containing these ic		2 - 21	2.
a) Li ⁺	b) Ba ²⁺	c) Cu ²⁺	d) Be ²⁺
	$\operatorname{Cn} + \operatorname{Cu}^{2+} \longrightarrow \operatorname{Zn}^{2+} + \operatorname{Cu} \text{ is best}$		
	/Zn b) Zn/Zn ²⁺ Cu ²⁺ /Cu		
- , ,) of an ion at infinite dilution is		, , ,
-	day b) $u_{\infty} = \lambda_{\infty} \times Faraday$	c) Faraday = $u_{\infty} \times \lambda$	λ_{∞} d) None of these
=	entity of current defined as :		
=	current passing for 1 sec		
-	sits 0.001118 g of Ag on cathod		
	sits electrochemical equivalence	e or metal	
d) All of the above	mada makamatal ta orongo or 22		
	rode potential is measured by	a) Drug	d) Call
a) Electrometer	b) Voltmeter	c) Pyrometer	d) Galvanometer
445. Chiorine gas is pas	seu mio a solution containing l	ar, and abrand CHC	${ m l}_3$ is added. The initial colour in

	CHCl ₃ layer is:			•	
	a) Violet due to formation	of I ₂			
	b) Orange due to formation of Br ₂				
	c) Colourless due to formation of F ₂				
	d) No colour change due t				
444.		ty for 50 min, 1.8 g metal d	leposits. The equivalent ma	ass of metal is	
	a) 9.3	b) 19.3	c) 38.3	d) 39.9	
445.	•	•		rent 0.25 mA flowing for 60	
	s?	•	2 7	5	
	a) 4.68×10^{18}	b) 2.34×10^{18}	c) 1.24×10^{18}	d) 0.46×10^{18}	
446.	,	Avogadro number, then cha	•	,	
	a) $F \times N$	b) $\frac{F}{N}$	c) $\frac{N}{F}$	d) F^2N	
447.	By how much is the oxidiz	zing power of $Cr_2O_7^{2-}/Cr^{3+}$	couple decreased if the H	⁺ concentration is	
	decreased from 1 M to 10		_		
	a) 0.207 V	b) 0.414 V	c) 0.001 V	d) 0.287 V	
448.	Which process involves co	orrosion?			
	a) Brown deposits on iron				
	b) Green deposits on batte				
	c) Black deposits on silve	-			
	d) All of the above				
449.		f a salt solution in water de	pends on the		
	a) Size of its molecules		b) Shape of its molecules		
	c) Size of solvent molecul	es	d) Extent of its ionization		
450.	The electrode potentials f				
	$Cu^{2+}(aq) + e^- \rightarrow$				
	and $Cu^+(aq) + e^- \rightarrow 0$				
	1 1	respectively. The value of	E_{α}° 2+ ϵ_{α} will be:		
	a) 0.150 V	b) 0.500 V	c) 0.325 V	d) 0.650 V	
151	,	olyte , specific conductivity			
431.	a) Both increase	nyte, specific conductivity	b) K_c increases, λ_c decre		
	•	nege	d) Both decrease	ases	
152	c) K_c decreases, λ_c increases. The cell reaction for the g		u) botti decrease		
434.	-				
	$Pt(H_2) pH = 2 pH = 3$ $P_1 = 1 \text{ atm}$ $P_2 = 1 \text{ atm}$	3 Pt(H ₂) ^m			
	a) Spontaneous	b) Non-spontaneous	c) In equilibrium	d) Either of these	
453.	*	value of Ca ²⁺ and Cl ⁻ at inf	*	-	
		$77.33 \times 10^{-4} \text{ m}^2 \text{ mho mol}$		•	
	a) 118.88×10^{-4}	b) 154.66×10^{-4}	c) 273.54×10^{-4}	d) 196.21×10^{-4}	
454.	•	ecies discharged at cathod		,	
	a) Anion	b) Cation	c) Ions	d) All of these	
455.	•	h solution, OH [–] ions are di			
1001	a) Dilute NaCl	b) Very dilute NaCl	c) Fused NaCl	d) Solid NaCl	
456	•	· •	•		
150.	456. A cell constructed by coupling a standard copper electrode and a standard magnesium e of 2.7 V. If the standard reduction potential of copper electrode is +0.34 V then that of t				
	electrode is	eduction potential of coppe	ir electrode is 1 old i v their	that of the magnesium	
	a) + 2.36 V	b) - 2.36 V	c) + 3.26 V	d) - 3,26 V	
457	•	,	•	is given by Hückel-Onsager	
1371	equation expressed as:	onadentity with concentra	and of strong electrolyte	15 Given by Hucker-Olisager	
		b) $\Lambda_{\infty} = \Lambda M - b\sqrt{c}$	c) $\Lambda = h \cdot \sqrt{g} = \Lambda^{\infty}$	d) None of these	
	$a_J n_M - n = b v c$	$D_J H_{\infty} - HM - DVC$	$c_J n_{\rm M} - b \gamma c - \Lambda$	a) None of these	

_			,		
Gn	liic	ьd	111	atic	n
JU	us	LU	uL	иии	,,,,

			Gpius Education
458. An electric current is pas	sed through silver nitrate	solution using silver electronic	rodes. 10.79 g of silver was
found to be deposited on	the cathode. If the same a	mount of electricity is pass	ed through copper sulphate
solution using copper ele	ctrodes, the weight of copp	er deposited on the cathod	le is
a) 1.6 g	b) 2.3 g	c) 3.2 g	d) 6.4 g
459. The amount of energy e	expanded during the pass	age of one ampere curre	nt for 100 second under a
potential of 115 V is :			
a) 20 kJ	b) 11.5 kJ	c) 115 kJ	d) 0.115 kJ
460. If a strip of copper metal:		•	ay oli 10 kg
a) Copper will precipitate	•	rrous surpriace.	
b) Iron will precipitate ou			
c) Both copper and iron v			
d) No reaction will take p			
461. The process of zinc-platin			D. G. L.
a) Annealing	b) Roasting	c) Galvanisation	d) Smelting
462. For the following cell with		wo different pressures p_1 a	nd p_2
Pt (H2) H+ (aq) Pt (H2)	2)		
p_1 1 M p_2			
emf is given by			
$\frac{RT}{2} \log \frac{p_1}{p_1}$	$\frac{RT}{N} \log \frac{p_1}{n}$	c) $\frac{RT}{F} \log_e \frac{p_2}{p_1}$	$\frac{RT}{d} \log \frac{p_2}{d}$
$F \stackrel{\log_e}{=} p_2$	$2F^{\log_e} p_2$	$F \stackrel{\log_e}{=} p_1$	$2F \stackrel{\log_e}{\longrightarrow} p_1$
463. During the electrolysis of	f a solution of AgNO ₃ , 9650	C of charge is passed thro	ugh the electroplating bath.
The mass of silver deposi	ted at the cathode will be		
a) 108 g	b) 10.8 g	c) 1.08 g	d) 18.10 g
464. What is the time (in sec)	required for depositing all	the silver present in 125m	L of 1 M AgNO ₃ solution by
passing a current of 241.2		•	
a) 10	b) 50	c) 1000	d) 100
465. For the redox reaction.			,
$7n(s) + Cu^{2+}(0.1 M) \rightarrow$	FPLUS EDU	LACITAL	
$7n^{2+} (1 M) + Cu(s)$	JPLUS EDUL	AHUN	
	is 1.10 V. $E_{ m cell}^{\circ}$ for the cell		
	is 1.10 v. E _{cell} for the cen	will be	
$\left(2.303 \frac{RT}{F} = 0.0591\right)$			
a) 2.14 V	b) 1.80 V	c) 1.07 V	d) 0.82 V
466. The limiting molar condu	ctivities Λ° for NaCl. KBr ar	nd KCl are 126, 152 and 15	$0.5 \text{ cm}^2 \text{ mol}^{-1} \text{ respectively.}$
The Λ° for NaBr is	,		
	b) 248 S cm ² mol ⁻¹	c) $328 \text{S} \text{cm}^2 \text{mol}^{-1}$	d) 348 S cm ² mol ⁻¹
467. The emf of the cell,	b) 2 10 0 cm moi	e, sze s em mor	a, o to o em mor
Ag $ Ag^+ (0.1 \text{ M}) Ag^+ (1.1 \text{ M}) $	M) I Ag at 200 K is		
	b) 0.059 V	a)	4) 0 CO V
a) 0.0059 V	•	c) 5.9 V	d) 0.59 V
468. A solution of sodium sulp		ea using inert electrodes. I	ne products at the cathode
and anode are respective			N 0 00
a) H ₂ ,O ₂	b) O ₂ , H ₂	c) O ₂ , Na	d) O_2 , SO_2
469. The standard electrode p	•		
$\operatorname{Sn}(s) + 2\operatorname{Fe}^{3+}(aq) \to 2\operatorname{Fe}^{3+}(aq) \to$			
(Given $E_{\text{Fe}^{3+}/\text{Fe}^{2+}}^{\circ} = 0.77$	V and $E_{\text{Sn}^{2+}/\text{Sn}}^{\circ} = -0.14 \text{ V}$)	
a) 0.63 V	b) 1.40 V	c) 0.91 V	d) 1.68 V
470. Hydrogen-oxygen fuel cel	,	•	•
a) Power for heat and ligh	=	FF-J	
b) Power for pressure			
c) Oxygen			

		Gpius Education
d) None of the above		
471. The resistance of 0.01 <i>N</i> solution of an electrolyte w		
a) 4.76×10^{-3} mho b) 4.76 mho	c) 210 mho	d) None of these
472. The amount of silver deposited on passing 2 F of elec-		
a) 54 g b) 108 g	c) 216 g	d) 324 g
473. Cell constant of a conductivity cell is usually derived	-	
a) KCl b) NaCl	c) NH ₄ Cl	d) LiCl
474. Four successive members of the first series of the		ed below. For which one of
them the standard potential $(E_{M^{2+}/M}^{\circ})$ value has a po	sitive sign?	
a) Co $(Z = 27)$ b) Ni $(Z = 28)$	c) $Cu (Z = 29)$	d) Fe $(Z = 26)$
475. When same quantity of electricity is passed through	aqueous AgNO ₃ and H ₂ SO	4 solutions connected in
series, 5.04 $ imes$ 10^{-2} g of $ m H_2$ is liberated. What is the r	mass of silver (in grams) d	eposited? (Eq. wts.of
hydrogen = 1.008, silver = 108)		
a) 54 b) 0.54	c) 5.4	d) 10.8
476. The term infinite dilution refers when:		-
a) $\alpha \rightarrow 1$, for weak electrolytes		
b) An electrolyte is 100% dissociated		
c) All interionic effects disappears		
d) All of the above		
477. In the problem 15, the limiting mobility of K ⁺ ion is	S:	
a) 6.1×10^{-4} b) 6.67×10^{-4}	c) 7.1×10^{-4}	d) 7.67×10^{-4}
478. The standard reduction potential at 290 K for the fol	llowing half reactions are,	
(i) $Zn^{2+} + 2e \rightarrow Zn(s)$; $E^{\circ} = -0.762 V$		
(ii) $Cr^{3+} + 3e \rightarrow Cr(s)$; $E^{\circ} = -0.740 V$		
(iii)2H ⁺ + 2e \rightarrow H ₂ (g); $E^{\circ} = -0.000 V$		
(iv) $Fe^{3+} + e \rightarrow Fe^{2+}; E^{\circ} = +0.77 V$		
Which is the strongest reducing agent?		
a) Zn b) Cr	c) Fe ²⁺	d) H ₂
479. Daniel cell, anode and cathode are respectively	271140711	, 2
a) $Zn \mid Zn^{2+}$ and $Cu^{2+} \mid Cu$ b) $Cu \mid Cu^{2+}$ and $Zn^{2+} \mid Zn^{2+}$	n c) Fe Fe ²⁺ and Cu ²⁺ Co	a d) Cu Cu ²⁺ and Fe ²⁺ Fe
480. Iron sheets are galvanized to:	, , ,	, ,
a) Prevent action of O ₂ and H ⁺ on Fe		
b) Prevent oxidation of Fe		
c) Prevent rusting		
d) All of the above		
481. The conductance of all the ions present in a solution	containing 1 g equivalent	in it is known as :
a) Conductivity	5	
b) Equivalent conductivity		
c) Molecular conductivity		
d) None of the above		
482. For the reduction of silver ions with copper metal,	the standard cell potential	is 0.46 V at 25°C. The value
of standard Gibbs energy ΔG° will be :	•	
a) - 89.0 kJ b) - 89.0 J	c) – 44.5 kJ	d) — 98.0 kJ
483. E^0 of an electrode is :	,	
a) Extensive property b) Constitutive property	c) Colligative property	d) Intensive property
484. The one which decreases with dilution is		_
a) Molar conductance	b) Conductance	
c) Specific Conductance	d) Equivalent conductan	ce
485. Which of the following metal can replace zinc from 2		
a) Cu b) Hg	c) Fe	d) Al

486. Several blocks of magnesium are fixed to the bottom of Aship to

a) Keep away the sharks

- b) Make the ship lighter
- c) Prevent action of water and salt
- d) Prevent puncturing by under- seArocks

487. $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$; $E^\circ = 1.51 \text{ V}$ $MnO_4 + 4H^+ + 2e^- \rightarrow Mn^{2++} 2H_2O$; $E^\circ = 1.23 \text{ V}$

 $E_{\mathrm{MnO_{4}^{-}|MnO_{2}}}^{\circ}$ is

- a) 1.70 V
- b) 0.91 V
- c) 1.37 V
- d) 0.548 V

488. In a salt bridge, KCl is used because:

- a) It is an electrolyte
- b) It is good conductor of electricity
- c) The transport number of K⁺ and Cl⁻ ions are nearly same or both have same ionic mobility.
- d) It is ionic compound.

489. AgNO₃ (aq) was added to an aqueous KCl solution gradually and the conductivity of the solution was measured. The plot of conductance (Λ) versus the volume of AgNO₃ is

a) (P)

b) (Q)

c) (R)

d) (S)

490. For the electrochemical cell, $M \mid M^+ \mid \mid X^- \mid X$, $E^{\circ}(M^+ \mid M) = 0.44 \text{ V}$ and $E^{\circ}(X \mid X^-) = 0.33 \text{ V}$. From this data one can deduce that

- a) $E_{\text{cell}} = 0.77 \text{ V}$
- b) -0.77 V
- c) $M^+ + X^- \rightarrow M + X$ is the spontaneous reaction
- d) $M + X \rightarrow M^+ + X^-$ is the spontaneous reaction

491. The specific conductance (κ) of an electrolyte of 0.1 N concentration is related to equivalent conductance (Λ) by the following formula

- a) $\Lambda = \kappa$
- b) $\Lambda = 10\kappa$
- c) $\Lambda = 100\kappa$
- d) $\Lambda = 10000\kappa$

492. Which is the correct representation for Nernst equation?

a)
$$E_{RP} = E_{RP}^{\circ} + \frac{0.059}{n} \log \frac{\text{[oxidant]}}{\text{[reductant]}}$$

b)
$$E_{OP} = E_{OP}^{\circ} - \frac{0.059}{n} \log \frac{\text{[oxidant]}}{\text{[reductant]}}$$

c)
$$E_{OP} = E_{OP}^{\circ} + \frac{0.059}{n} \log \frac{\text{[reductant]}}{\text{[oxidant]}}$$

d) All of the above

493. The number of electrons required to deposit 1 g atom of Al(at. wt. = 27) from a solution of AlCl₃ are:

a) 1 N

b) 2 N

c) 3 N

d) 4 N

494. The standard reduction potential of some electrodes are,

$$E^0(K^+/K) = -2.9 V$$
,

$$E^{0}(\text{Zn}^{2+}/\text{Zn}) = -0.76 \text{ V}, E^{0} (\text{H}^{+}/\text{H}_{2}) = -0.00 \text{V},$$

$$E^0(Cu^{2+}/Cu) = +0.34 \text{ V}$$

The Strongest oxidant is:

- a) Copper
- b) Zinc

- c) Hydrogen
- d) Cu^{2+}

495. In the electrolytic cell, flow of electrons is from

		Gpius Eaucation
a) Cathode to anode in solution	b) Cathode to anode thr	ough external supply
c) Cathode to anode through internal supply	d) Anode to cathode thr	ough internal supply
496. The weight ratio of Mg and Al deposited during the	passage of same current th	rough their molten salts :
a) 12:9 b) 9:12	c) 6:2	d) 2 : 3
$497.2 \text{Fe}^{3+} + 3 \text{I}^{-} \rightleftharpoons 2 \text{Fe}^{2+} + \text{I}_{3}^{-}$		
The standard reduction potentials in acidic condition		pectively for Fe^{3+} / Fe^{2+} and
I_3^- / I^- couples. The equilibrium constant for the re	eaction is	
a) 6.26×10^{-7} b) 5.33×10^{-4}	c) 6.26×10^7	d) 5.33×10^4
498. In a cell that utilizes the reaction		
$Zn(s) + 2H^{+}(aq) \rightarrow Zn^{2+}(aq) + H_{2}(g)$		
addition of H ₂ SO ₄ to cathode compartment will		
a) Lower the $\it E$ and shift equilibrium to the right		
b) Lower the $\it E$ and shift equilibrium to the left		
c) Increase the $\it E$ and shift equilibrium to the right		
d) Increase the E and shift equilibrium to the left		
499. On passing electricity through dilute H ₂ SO ₄ solutio	n the amount of substance	e liberated at the cathode and
anode are in the ratio:		
a) 1:8 b) 8:1	c) 16:1	d) 1:16
500. The increase in equivalent conductivity of an strong	g electrolytic solution with	dilution is attributed to :
a) Increase in number of ions per unit volume		
b) Increase in molecular attraction		
c) Increase in degree of dissociation		
d) Increase in ionic mobility	~	
501. The cell, $Zn \mid Zn^{2+} (1 \text{ M}) \mid Cu^{2+} (1 \text{ M}) \mid Cu$	1 . 000 IX III	
$(E_{\text{cell}}^{\circ} = 1.10 \text{ V})$, was allowed to be completely discharged to the complete $(E_{\text{cell}}^{\circ} = 1.10 \text{ V})$	iarged at 298 K. The relative	ve concentration of
$\operatorname{Zn^{2+}}$ to $\operatorname{Cu^{2+}}\left(\frac{[\operatorname{Zn^{2+}}]}{[\operatorname{Cu^{2+}}]}\right)$ is		
a) Antilog (24.08) b) Antilog (37.3)	c) 10 ^{37.3}	d) 9.65×10^4
502. The algebraic sum of potentials of two electrodes of		,
a) Potential difference b) Ionic difference	c) e.m.f.	d) Electrode difference
503. The standard oxidation potentials, E° for the half re	actions are ;	
$Zn \rightarrow Zn^{2+} + 2e; E^{\circ} = +0.76 \text{ V}$		
$Ag \rightarrow Ag^+ + e; \qquad E^\circ = -0.77 \text{ V}$		
The standard e. m. f. of the cell,		
$Ag^+ + Zn \rightarrow Zn^{2+} + Ag is:$		
a) $+ 1.53 \text{ V}$ b) $- 1.53 \text{ V}$	c) -0.01 V	d) + 0.01 V
504. Rust is a mixture of :		
a) FeO and Fe(OH) ₂ b) FeO and Fe(OH) ₃	c) Fe_2O_3 and $Fe(OH)_3$	d) Fe_3O_4 and $Fe(OH)_3$
505. A metal having negative reduction potential when d	lipped in the solution of its	own ions, has a tendency :
a) To pass into the solution		
b) To be deposited from the solution		
c) To become electrically positive		
d) To remain neutral		
506. The resistance of 0.5 N solution of an electrolyte		
equivalent conductivity of the same solution isi	f the electrodes in the cell	are 2.2 cm apart and have an
area of 3.8 cm ² .		
a) 25.73 b) 30.75	c) 35.75	d) 15.75
507. The SI unit for ionic mobility is:		
	c) cm volt ⁻¹ sec ⁻¹	
508. Which modifications are necessary to determine re	esistance of solution by us	ual method of measurements

Gplus Education

			opius zaucation
	Wheatstone bridge principle?		
-	A.C. should be used		
-	A conductivity cell is used		
	Galvanometer is replaced by magic eye or head ph	ione arrangement	
-	All of above		
	e number of electrons passing per second through		
-	5×10^{19} b) 8×10^{19}	c) 1×10^{19}	d) 1.6×10^{19}
	ctrolytic reduction of alumina to aluminium by Ha	all-Heroult process is carrie	ed out :
_	n the presence of NaCl		
-	n the presence of fluoride		
=	n the presence of cryolite, which forms a melt wit		
-	n the presence of cryolite, which forms a melt wit		
511. Elec	ctrolytes, when dissolved in water, dissociate into	their constituent ions. The	e degree of dissociation of a
wea	ak electrolyte increases with		
a) 1	The presence of a substance yielding common ion		
_	Decreasing temperature		
c) I	Decreasing concentration of the electrolyte		
d) I	ncreasing concentration of the electrolyte		
512. The	e electrolytic bath used in gold plating of copper a	rticles contains :	
a) N	Molten gold b) CuSO ₄	c) AuCl ₃	d) AuCl ₃ + NaCN
513. Pur	e water does not conduct electricity because it is		
a) E	Basic	b) Almost not ionised	
c) I	Decomposed easily	d) Acidic	
514. Gal	vanic cell is Adevice in which		
a) (Chemical energy is converted into electrical energ	y.	
b) E	Electrical energy is converted into chemical energ	gy.	
c) (Chemical energy is seen in the form of heat.		
d) T	Thermal energy from an outside source is used to	drive the cell reaction.	
515. Asta	andard hydrogen electrode has zero electrode po	tential because	
a) F	Hydrogen is easier to oxidise	b) This electrode potentia	l is assumed to be zero
-	Hydrogen atom has only one electron	d) Hydrogen is the lightes	
	e molar conductivity at infinite dilution of Ag		e 116.5, 110.3 and 105.2
mh	o ${ m cm^2mol^{-1}}$ respectively. The molar conductivity	of AgCl is:	
a) 1	l21.6 b) 111.4	c) 130.6	d) 150.2
517. Wh	ich is correct about fuel cells?		
a) (Cells continuously run as long as fuels are supplied	d	
b) 1	These are more efficient and free from pollution		
c) T	These are used to provide power and drinking wa	ter to astronauts in space p	rogramme
d) <i>A</i>	All of the above		
	e value of electronic charge is equal to :		
a) –	Faraday Av. number		
-	Faraday × Av. number		
c) -	Av. number		
•	Faraday		
•	None of these		
519. The	e formula $\alpha = \frac{\Lambda_{\rm v}}{\Lambda_{\infty}}$ is valid for :		
a) V	Weak electrolytes b) Strong electrolytes	c) Salts	d) None of these
520. A h	ypothetical electrochemical cell is shown below;		

$\overset{\mathbf{e}}{A}|A^{+}(xM)||B^{+}(yM)|\overset{\mathbf{e}}{B}$

The e.m.f. measured is + 0.20 V. The cell reaction is:

a) The cell reaction cannot be predicted

b)
$$A + B^+ \longrightarrow A^+ + B$$

c)
$$A^+ + B \longrightarrow A + B^+$$

d)
$$A^+ + e^- \rightarrow A$$
; $B^+ + e^- \rightarrow B$

521. The laws of electrolysis ware proposed by

- a) Kohlraush
- b) Faraday
- c) Nernst

d) Berthelot

522. When X amperes of current is passed through molten AlCl₃ for 96.5 s. 0.09 g of aluminium is deposited. What is the value of *X*?

a) 10 A

b) 20 A

c) 30 A

d) 40 A

523. It is impossible to measure the actual voltage of any half cell by itself because:

- a) Both half cell reactions takes place simultaneously
 - b) Of resistance of wire
 - c) A reaction does not take place on its own
 - d) None of the above

524. The art of electroplating was given by:

- a) Faraday
- b) Edison
- c) Graham

d) Brugan

525. If 1 faraday of charge is passed through a solution of CuSO₄, the amount of copper deposited will be equal

- a) Gram equivalent weight
- b) Gram molecular weight
- c) Atomic weight
- d) Electrochemical equivalent

526. The oxidation potential values of A, B, C and D are -0.03, +0.108 V,-0.07 V and +0.1 V respectively. The non-spontaneous cell reaction takes place between

- a) Aand B
- b) B and D
- c) *D* and *A*

d) B and C

527. The conductivity of N/10 KCl solution at 20° C is 0.0212 ohm⁻¹ cm⁻¹ and the resistance of cell containing this solution at 200 C is 55 ohm. The cell constant is:

- a) 2.173 cm^{-1}
- b) 1.166 cm^{-1}
- c) 4.616 cm^{-1}

d) 3.324 cm^{-1}

528. What is the value of E_{cell} ?

$$Cr | Cr^{3+} (0.1 M) | Fe^{2+} (0.01 M) | Fe$$

Given, $E^{\circ}_{Cr^{3+}/Cr} = -0.74 V$

and
$$E^{\circ}_{Fe^{2+}/Fe} = -0.44 V$$

d) -0.2606 V

a) +0.2941 V b) +0.5212 V c) +0.1308 V 529. The E° for OCl $^{-}$ /Cl $^{-}$ and Cl $^{-}$ / $\frac{1}{2}$ Cl $_{2}$ are 0.94 V and -1.36 V; E° for OCl $^{-}$ / $\frac{1}{2}$ Cl $_{2}$ is :

- a) 0.42 V
- b) -2.20 V

d) 1.04 V

530. The cell reaction for the given cell is spontaneous if :

 $\Pr_{P_1}(\mathsf{H}_2)|\mathsf{H}^+(1M)||\;\mathsf{H}^+\;(1M)|\Pr_{P_2}(\mathsf{H}_2)$

- a) $P_1 > P_2$
- c) $P_1 = P_2$

d) $P_1 = 1$ atm

531. When an acid cell is charged, then

a) Voltage of cell increases

b) Resistance of cell increases

c) Electrolyte of cell dilutes

d) None of the above

532. An electrolytic cell contains a solution of Ag₂SO₄ and platinum electrodes. A current is passed until 1.6 g of O_2 has been liberated at anode. The amount of Ag deposited at cathode would be:

a) 1.6 g

b) 0.8 g

- c) 21.6 g
- d) 107.88 g

533. For Acell given below,

$$Ag^+ + e^- \rightarrow Ag$$
, $E^\circ = x$
 $Cu^{2+} + 2e^- \rightarrow Cu$, $E^\circ = y$
 E_{cell}° is

a) x + 2y

b) 2x + y

c) y - x

d) y - 2x

534. EMF of a cell in terms of reduction potential of its left and right electrodes is

a)
$$E = E_{\text{left}} - E_{\text{right}}$$

b) $E = E_{\text{right}} - E_{\text{left}}$ c) $E = E_{\text{left}} + E_{\text{right}}$

d) None of these

535. At 18°C the conductance of H^{+} and $\text{CH}_{3}\text{COO}^{-}$ at infinite dilution are 315 and 35 mho cm² eq⁻¹ respectively. The equivalent conductivity of CH₃COOH at infinite dilution ismho cm 2 eq. $^{-1}$:

a) 350

b) 280

c) 30

d) 315

536. An alloy of Pb-Ag weighing 1.08 g was dissolved in dilute HNO₃ and the volume made to 100 mL. A silver electrode was dipped in the solution and the emf of the cell set up

$$Pt(s), H_2(g) | H^+(1 M) | | Ag^+(aq) | Ag(s)$$

Was 0.62 V. If $E_{\text{cell}}^{\circ} = 0.80 \text{ V}$, what is the percentage of Ag in the alloy?

[At 25° C, RT /F = 0.06]

a) 25

b) 2.50

c) 10

d) 50

537. A lamp draws a current of 1.0 A. Find the charge in coulomb used by the lamp in 60 s.

a) 0.6 C

b) 60 C

c) 600 C

d) 0.006 C

538. During electrolysis of water the volume of O₂ liberated is 2.24dm³. The volume of hydrogen liberated, under same conditions will be

a) $2.24 \, dm^3$

b) 1.12 dm³

c) $4.48 \, dm^3$

d) $0.56 \, dm^3$

539. The amount of electricity required to liberate 1 g-equiv of Cu is

a) 96500 F

b) 1 F

c) 1 C

d) 96500 A

540. Which of the following is correct?

a) Zinc acts as cathode in Daniell cell

b) In a Li – Zn couple, zinc acts as anode

c) Copper will displace iron in solution

d) Zinc displaces tin from its solution

541. The number of electrons involved in redox reactions when a faraday of electricity is passed through an electrolyte in solution is:

a) 6×10^{23}

b) 8×10^{19}

c) 69500

d) 6×10^{-23}

542. During electrolysis of fused sodium chloride, the reaction of the electrodes are:

Anode Cathode

a)
$$Na^+ + e \rightarrow Na$$
 $Cl^- \rightarrow \frac{1}{2}Cl + e$
b) $Na \rightarrow Na^+ + e$ $\frac{1}{2}Cl_2 + e \rightarrow Cl^-$

$$Cl^{-} \rightarrow \frac{1}{2}Cl + e$$

b) Na
$$\rightarrow$$
 Na⁺ + e

$$\frac{1}{2}Cl_2 + e \rightarrow Cl^{-1}$$

c)
$$Cl^{-} \rightarrow \frac{1}{2}Cl_{2} + e$$
 $Na^{+} + e \rightarrow Na$
d) $\frac{1}{2}Cl_{2} + e \rightarrow Cl^{-}$ $Na \rightarrow Na^{+} + e$

$$Na^+ + e \rightarrow Na$$

d)
$$\frac{1}{2}$$
Cl₂ + $e \rightarrow Cl^{-1}$

$$Na \rightarrow Na^+ + c$$

543. Which one is correct about conductivity water?

- a) The water whose own conductance is very small
- b) The water obtained after 7-8 times distillation
- c) Kohlrausch prepared the conductivity water for the first time
- d) All of the above

544. Blocks of magnesium metal are often strapped to the steel hulls of ocean going ships in order to:

- a) Provide cathodic protection
- b) Protect oxidation of steel
- c) Both (a) and (b) are correct
- d) Neither (a) nor (b) is correct

545. Given the limiting molar conductivity as

```
\Lambda_{\rm m}^0 (HCl) = 425.9\Omega^{-1} cm<sup>2</sup> mol<sup>-1</sup>
      \Lambda_{\rm m}^0 (NaCl) = 126.4\Omega^{-1} cm<sup>2</sup> mol<sup>-1</sup>
      \Lambda_{\rm m}^0 \, ({\rm CH_3COONa}) = 91\Omega^{-1} \, {\rm cm^2 \, mol^{-1}}
      The molar conductivity, at infinite dilution, of acetic acid (in \Omega^{-1}cm<sup>2</sup> mol<sup>-1</sup>) will be
                                      b) 390.5
      a) 481.5
546. If the standard electrode potential of Cu^{2+} / Cu electrode is 0.34 V, what is the electrode potential at 0.01
      M concentration of Cu<sup>2+</sup>?
      (T = 298 K)
      a) 0.399 V
                                      b) 0.281 V
                                                                       c) 0.222 V
                                                                                                        d) 0.176 V
547. If the \Delta G^{\circ} of Acell reaction,
      AgCl + e^- \to Ag^+ + Cl^- is - 21.20 \text{ kJ};
      The standard emf of the cell is
      a) 0.220 V
                                       b) -0.220 V
                                                                       c) 0.229 V
                                                                                                        d) -0.110 V
548. For the cell reaction, \operatorname{Cu}_{c_2}^{2+}(aq) + \operatorname{Zn}(s) \to \operatorname{Zn}_{c_1}^{2+}(aq) + \operatorname{Cu}(s), the change in free energy (\Delta G) at a given
      temperature is a function of:
      a) In c_1
                                      b) In (c_2/c_1)
                                                                     c) In (c_1 + c_2)
                                                                                                        d) In c_2
549. Consider the following cell reaction
      2\text{Fe}(s) + O_2(g) + 4\text{H}^+(aq) \rightarrow
      2Fe^{2+}(aq) + 2H_2O(l), E^{\circ} = 1.67 V
      At[Fe<sup>2+</sup>] = 10^{-3} M, P (O<sub>2</sub>) = 0.1 atm and pH = 3, the cell potential at 25°C is
                                      b) 1.77 V
      a) 1.47 V
                                                                       c) 1.87 V
                                                                                                         d) 1.57 V
550. Aluminium oxide may be electrolysed at 1000^{\circ}C to furnish aluminium metal (atomic mass = 27 u; 1 F =
      96500 C). The cathode reaction is
      Al^{3+} + 3e^- \rightarrow Al^0
      To prepare 5.12 kg of aluminium metal by this method would require
      a) 5.49 \times 10^1 C of electricity
                                                                       b) 5.49 \times 10^4 C of electricity
      c) 1.83 \times 10^7 C of electricity
                                                                       d) 5.49 \times 10<sup>7</sup> C of electricity
551. The standard potentials at 25°C for the following half reactions are given ahead,
      Zn^{2+} + 2e \rightarrow Zn; E^{\circ} = -0.762 \text{ V}
      Mg^{2+} + 2e \rightarrow Mg; \quad E^{\circ} = -2.37 \text{ V}
      When zinc dust is added to the solution of MgCl<sub>2</sub>:
      a) ZnCl<sub>2</sub> is formed
      b) Zinc dissolves in the solution
      c) No reaction takes place
      d) Mg is precipitated
552. The cell reaction for the given cell is spontaneous if :
      Pt_{Cl_2} | Cl^-(1M) | | Cl^-(1M) | Pt_{Cl_2}
                                      b) P_1 < P_2
      a) P_1 > P_2
                                                                       c) P_1 = P_2
                                                                                                        d) P_1 = 1 atm
553. Passage of three faraday of charge through aqueous solution of AgNO<sub>3</sub>, CuSO<sub>4</sub>, Al(NO<sub>3</sub>)<sub>3</sub> and NaCl will
      deposit metals at the cathode in the molar ratio of:
      a) 1:2:3:1
                                     b) 6:3:2:6
                                                                       c) 6:3:0:0
                                                                                                        d) 3:2:1:0
554. In the problem 15, ionic conductance of K<sup>+</sup> ion is:
      a) 64.35
                                      b) 60.20
                                                                       c) 262.26
                                                                                                        d) 26.22
555. In the electrochemical reaction,
      2Fe^{3+} + Zn \rightarrow Zn^{2+} + 2Fe^{2+}
      increasing the concentration of Fe<sup>2+</sup>
      a) Increases cell emf
                                                                        b) Increases the current flow
      c) Decreases the cell emf
                                                                        d) Alter the pH of the solution
556. How many electrons are there in one coulomb?
```

GPLUS EDUCATION WEB: WWW.GPLUSEDUCATION.ORG PHONE NO: 8583042324 Page | 43

_					
Gpi	liic	-di	1100	7 <i>†1/</i>	าท
UD	ıus	Lui	<i>4</i> L L	<i>1</i> LI L	,,,

			Gpius Education
a) 6.02×10^{21}	b) 6.24×10^{18}	c) 6.24×10^{15}	d) 6.02×10^{16}
557. The element which o	an displace three other halog	ens from their compound is	
a) F	b) Cl	c) Br	d) I
558. The units of equivale	ent conductivity is		
a) S cm ²		b) ohm cm ² (g – equivale	ent)
c) ohm cm		d) ohm $^{-1}$ cm 2 (g – equiva	
•	rium constant for the reactior		,
-	$\rightarrow \text{Cu}^{2+}(aq) + 2\text{Ag}(s)$		
at 25 °C, $E_{\text{cell}}^{\circ} = 0.47$			
F = 96500 C is	. ,		
a) 1.8×10^{15}	b) 8.5×10^{15}	c) 1.8×10^{10}	d) 85×10^{15}
•	of hydrogen and magnesium	•	•
and MgSO ₄ in aqueo		deposited by the same amou	int of electricity from 11 ₂ 30 ₄
	b) 1 : 12	c) 1:16	d) None of these
a) 1:8			d) None of these
_	nOH and NaCl are 129.8, 217	.4 and 108.9 onm - cm- eq.	respectively. The λ_{∞} of
NH ₄ OH is ohm		-) 240	4) 200
a) 238.3	b) 218	c) 240	d) 260
	ode during the electrolysis of a	aqueous solution of Naci in N	reison cell is :
a) $2Cl^- \rightarrow Cl_2 + 2e$			
b) $2H^+ + 2e \rightarrow H_2$. 0		
c) $20H^- \rightarrow H_2 + 0$	₂ + 2 <i>e</i>		
d) $Na^+ + e \rightarrow Na$			
	ng is an additive property?		D.M. Cal
a) Conductance	b) Viscosity	c) Surface tension	d) None of these
_		laCl, KBr and KCl are	126, 152 and 150
-	ively. The Å for NaBr is:		
	b) 176 S cm ² mol ⁻¹	c) 278 S cm ² mol ⁻¹	d) $128 \text{S cm}^2 \text{mol}^{-1}$
	le is reversible with respect to		
a) Hg ₂ +	b) H ⁺	c) Hg ²⁺	d) Cl ⁻
566. Reaction taking plac			
a) $Zn^{2+} + 2e \rightarrow Zn$	(s) b) $\operatorname{Zn}(s) \to \operatorname{Zn}^{2+} + 2e$	c) $Mn^{2+} + 2e \rightarrow Mn(s)$	d) $Mn(s) \rightarrow Mn^{2+} + 2e$
567. Number of faraday r	equired to liberate 8 g of $ m H_2$ is	S:	
a) 8	b) 16	c) 4	d) 2
568. The number of could	mbs required to reduce 12.3	g of nitrobenzene to aniline, i	is
a) 96500 C	b) 5790 C	c) 95700 C	d) 57900 C
569. On passing 0.1 F of e	lectricity through aluminium	metal deposited at cathode is	s (Al = 27)
a) 0.3 g	b) 0.6 g	c) 0.9 g	d) 1.2 g
570. During electrolysis of	of $ m H_2O$, the molar ratio of $ m H_2$ and	nd O_2 formed is :	
a) 2:1	b) 1 : 2	c) 1:3	d) 1:1
571. At infinite dilution st	age, the solution of CH ₃ COOH	in water does not contain :	
a) H ⁺ ion	b) CH ₃ COO [–] ion	c) CH ₃ COOH molecule	d) All of these
572. 1 faraday of electrici	ty will liberate 1 g-atom of the	e metal from the solution of:	
a) NaCl	b) BaCl ₂	c) CuSO ₄	d) AlCl ₃
573. The standard electro	ode potential of hydrogen elec	trode at 1 M concentration a	nd hydrogen gas at 1atm
pressure is	, ,		
a) 1 V	b) 6 V	c) 8 V	d) 0 V
•	cell at 298 K is E_1 , Zn ZnSO ₄		•
(0.01 M) (1.0 M)	1, 4	11	
	that of CuSO ₄ is 0.01 M, the	e emf changed to E_2 . What	is the relationship between
E_1 and E_2 ?	T ,	J 2	1
- <i>-</i>			

G	nl	115	Fd	וור	ati	on
U	μι	us	LU	uс	uu	ווע

a) $E_1 = E_2$	b) $E_1 > E_2$	c) $E_1 < E_2$	
575. The acid used in le	ad storage battery is		
a) H ₂ SO ₄	b) H ₃ PO ₄	c) HCl	
576. The conductance o	f 1 cm ³ of a solution is kno	wn as its :	

- a) Resistance
- b) Conductivity
- c) Equivalent conductivity
- d) Molecular conductivity
- 577. The limiting molar conductivities Λ° for NaCl,KBr and KCl are 126,152 and 150 S cm²mol⁻¹ respectively. The Λ° for NaBr is
 - a) $128 \, \text{S cm}^2 \text{mol}^{-1}$
- b) 176 S cm²mol⁻¹
- c) $278 \,\mathrm{S} \,\mathrm{cm}^2\mathrm{mol}^{-1}$ d) $302 \,\mathrm{S} \,\mathrm{cm}^2\mathrm{mol}^{-1}$

d) $E_2 = 0 \neq E_1$

d) HNO₃

578. The variation of equivalent conductivity of weak electrolyte with $\sqrt{\text{concentration}}$ is correctly shown in

579. The electrode potential measures the:

- a) Tendency of the electrode to gain or lose electrons
- b) Tendency of the cell reaction to occur
- c) Difference in the ionisation potential of electrode and metal ion
- d) Current carried by an electrode

580. Metals can be prevented from rusting by:

- a) Connecting iron to more electropositive metal, i.e., cathodic protection
- b) Connecting iron to more electropositive metal, i. e., anodic protection
- c) Connecting iron to less electropositive metal, i. e., anodic protection
- d) Connecting iron to less electropositive metal, i. e., cathodic protection
- 581. The number of faraday required to liberate 1 mole of any element indicates :
 - a) Weight of element
 - b) Conductance of electrolyte
 - c) Charge on the ion of that element
 - d) None of the above
- 582. Lithium is generally used as an electrode in high energy density batteries. This is because:
 - a) Lithium is the lightest element
 - b) Lithium has quite high negative reduction potential
 - c) Lithium is quite reactive
 - d) Lithium does not corrode easily
- 583. Corrosion of iron is essentially an electrochemical phenomenon where the cell reactions are
 - a) Fe is oxidised to Fe $^{2+}$ and dissolved oxugen in water is reduced to OH $^-$
- b) Fe is oxidised to Fe³⁺ and H_2O is reduced to O_2^{2-}
- Fe is oxidised to $\mathrm{Fe^{2+}}$ and $\mathrm{H_2O}$ is reduced to $0\frac{1}{2}$
- d) Fe is oxidised to Fe²⁺ and H_2O is reduced to O_2

584. In the electrodeposition of Ag, the silver ions are:

- a) Reduced at anode
- b) Reduced at cathode
- c) Oxidised at anode
- d) Oxidised at cathode

585. Standard E° of the half cell Fe|Fe²⁺ is + 0.44 V and standard E° of half cell Cu | Cu²⁺ is -0.32 V then :

- a) Cu oxidises Fe²⁺ ion
- b) Cu²⁺ oxidises Fe
- c) Cu reduces Fe²⁺ ion d) Cu²⁺ reduces Fe

586. Which of the following is displaced by Fe?

a) Ag

b) Zn

c) Na

d) All of these

587. The electrochemical cell stops working after sometimes because

a) Electrode potential of both the electrodes becomes zero

Gplus Education

	b) Electrode potential of t	our the electrodes become	s equal	
	c) One of the electrodes is	eaten away		
	d) The cell reaction gets re	eversed		
588	The resistance of $0.01~N$ s	solution of an electrolyte w	as found to be 210 ohm at	298 K, using a conductivity
		${ m cm}^{-1}$. The conductivity of s		
	a) $3.14 \times 10^{-3} \text{ mho cm}^-$	1		
	b) $3.14 \times 10^{-3} \text{ mho}^{-1} \text{ cm}$			
	c) 3.14 mho cm ⁻¹	-		
	d) 3.14 mho ⁻¹ cm ⁻¹			
589	•	f acetic acid at infinite dilu	ition is 390.7 and for 0.1.	M acetic acid solution is 5.2
307		ee of dissociation of 0.1 <i>M</i>		n acetic acid solution is 5.2
	a) 13.3%	b) 0.0133%	c) 1.33%	d) 133%
500	•		C) 1.33%	u) 133%
390.	. When a lead storage batte	· ·	a) A someontwation call	d) An algorithm and
- 04			c) A concentration cell	d) An electrolytic cell
591,	For gold plating, the electr	•) WEA (ON)]	D.M. G.I
	a) AuCl ₃	b) HAuCl ₄	c) K[Au(CN) ₂]	d) None of these
592.	-	2	-	assed through a solution of
		ng an electrolysis experim		
	a) 108	b) 18000	c) 180	d) 3000
593	- · · · · · · · · · · · · · · · · · · ·		=	der the potential of 230 V?
	a) 56 kJ	b) 86 kJ	c) 36 kJ	d) 92 kJ
594	. What will be the emf for t	he given cell Pt $H_2(p_1)$ H	$^{+}(aq) H_{2}(p_{2}) Pt?$	
	$\frac{RT}{m}\log\frac{p_1}{n}$	b) $\frac{RT}{F}\log\frac{p_1}{p_2}$	$RT \log \frac{p_2}{r}$	d) None of these
	$2F^{10g}p_2$	$F \stackrel{\log}{=} p_2$	$F \stackrel{\log}{=} p_1$	
595	. The time required to coat	a metal surface of 80 cm ²	with 5 \times 10 ⁻³ cm thick la	yer of silver (density 1.05 g
	cm ⁻³ with the passage of	3A current through a silver	nitrate solution is :	
	a) 115 sec	b) 125 sec	c) 135 sec	d) 145 sec
596	On electrolysing a solution	n of dilute H ₂ SO ₄ between	platinum electrodes, the g	as evolved at the anode and
	cathode are respectively:	JATO2 FDOC	WILLIAM	
	a) SO_2 and O_2	b) SO_3 and H_2	c) O_2 and H_2	d) H ₂ and O ₂
597		valent of silver is 0.001118	30 g. When an electric curr	ent of 0.5 ampere is passed
		nitrate solution of 200 sec		
	-	b) 0.11180 g	-	
598.	. Galvanised iron sheets ha		-, 8	,
	a) Cu	b) Sn	c) Zn	d) Carbon
599	. Ionisation depends upon	<i>5)</i> 5	0) 2	u) cur 5011
000	a) Pressure	b) Volume	c) Dilution	d) None of these
600	•			and -8.2 for $H_2O(l)$, $CO_2(g)$
000	_	vely. The value of E°_{cell} for		
	a) 2.0968 V	b) 1.0968 V	c) 0.0968 V	d) 1.968 V
د ۱ ۱			,	u) 1.908 v
001	•	r, 1 F of electrical energy w		1) 22 41 -6
.	a) 1 mole of oxygen	b) 1 g atom of oxygen		d) 22.4 L of oxygen
602		= 50 ohm, N = 1.0. The eq	=	ne electrolytic cell is
	a) $10\Omega^{-1}$ cm ² g equiv ⁻¹		b) $20\Omega^{-1}$ cm ² g equiv ⁻¹	
	c) $300\Omega^{-1} \text{ cm}^2 \text{ g equiv}^{-1}$		d) $100\Omega^{-1} \text{ cm}^2 \text{ g equiv}^{-1}$	
603		ed through the solutions of	AgNO ₃ , CuSO ₄ and AuCl ₃ ,	the molar ratio of the
	cations deposited at the ca			
	a) 1:1:1	b) 1:2:3	c) 3:2:1	d) 6:3:2
504	If $Mg^{2+} + 2e \rightarrow Mg(s)$;			
	$Cu^{2+} + 2e \rightarrow Cu(s);$	E = +0.34 V?		

			opius zaucation
	The e.m.f. of the cell Mg Mg^{2+} Cu^{2+} Cu is :	a) 2 00 V	d) 1 46 V
60E	a) 2.71 V b) 2.30 V The standard reduction potentials of	c) 2.80 V	d) 1.46 V
003.	Zn^{2+} Zn, Cu^{2+} Cu and Ag^{+} Ag are respectively – Cu^{2+}	0.76 0.34 and 0.8 V. The fol	lowing calls were
	constructed	7.70, 0.54 and 0.6 V. The lor	nowing cens were
	I Zn Zn ²⁺ Cu ²⁺ Cu		
	II Zn Zn ²⁺ Ag ⁺ Ag		
	III Cu Cu ²⁺ Ag ⁺ Ag		
	What is the correct order of E_{cell}° of these cells?		
	a) II > III > I b) II > III	c) I > II > III	d) III > I > II
606.	What is the effect of dilution on the equivalent condu	•	
000.	a) Decreases on dilution	b) Remains unchanged	· ·
	c) Increases on dilution	d) None of these	
607.		A^{∞} is not possible	e by extrapolation of
	Λ vs \sqrt{c} curves to zero concentration?	1	,
	a) KCl b) NH ₄ OH	c) NaCl	d) K ₂ SO ₄
608.	The standard reduction potential, E° for the half-reac	•	<i>y</i> 2 4
	$Zn \rightleftharpoons Zn^{2+} + 2e^-, E^\circ = \bigoplus 0.76 \text{ V}$		
	Fe \rightleftharpoons Fe ²⁺ + 2e ⁻ , E° = +0.41 V		
	The E°_{cell} for the cell formed by these two electrodes	is	
	a) -0.35 V b) -1.17 V	c) +0.35 V	d) +1.17 V
609.	In the electrochemical cell, $H_2(g)1$ atm \mid H^+ (1 M) \mid C	$u^{2+}(1 M) Cu(s)$	
	Which one of the following statements is true?		
	a) H ₂ is anode, Cu is cathode	b) Cu is anode, H ₂ is catho	
	c) Oxidation occurs at Cu electrode	d) Reduction occurs at H ₂	electrode
610.	Which of the following does not conduct electricity?		
	a) Fused NaCl b) Solid NaCl	c) Brine solution	d) Copper
611.	The ionic mobility of alkali metal ions in aqueous solu	Carlo	1) N. +
(12	a) K ⁺ b) Rb ⁺	c) Li ⁺	d) Na ⁺
012.	The e.m.f. of the cell involving following changes, $7\pi(s) + Ni(s) = 7\pi^{2+}(1M) + Ni(s) = 0.5105 \text{ M}$	The standard amf of the	aall ia .
	$Zn(s) + Ni^{2+}(1M) \rightarrow Zn^{2+}(1M) + Ni(s)$ is 0.5105 V. a) 0.540 V b) 0.4810 V		d) 0.5105 V
	The factor temperature coefficient of e.m.f. is:	C) 0.3090 V	u) 0.3103 v
013.		c) $(\partial E/\partial V)_T$	d) None of these
614	On passing 1 F of electricity through the electrolytic of	, , , , , , , , , , , , , , , , , , ,	
0111	deposited Ag (at. wt. = 108), Ni (at. wt. = 59) and Cr		ina di Tons sonation, me
	Ag Ni Cr	(
	a) 108 g 29.5 g 17.3 g	b) 108 g 59.5 g 52.0 g	9
	c) 108 g 108 g 108 g	d) 108 g 117.5 g 166 g	=
615.	Which of the following expression is correct?		
	a) $\Delta G^{\circ} = -nFE_{\rm cell}^{\circ}$	b) $\Delta G^{\circ} = + nFE_{\text{cell}}^{\circ}$	
	c) $\Delta G^{\circ} = -2.303 RT \ nFE_{cell}^{\circ}$	d) $\Delta G^{\circ} = -nF \log K_c$	
616.	For which cell e.m.f. is independent of the concentrat	ion of electrolytes used?	
	a) Fe FeO(s) KOH(aq) Nb) Pt(H ₂) HCl Pt(Cl ₂)	c) $Zn Zn(NO_3)_2 CuSO_4 $	Cd) Hg, HgCl ₂ KCl AgNO ₃ .
617.	In the problem 13, the dissociation constant of acid is	S:	
	a) 2.067×10^{-4} b) 1.02×10^{-4}	c) 1.02×10^{-3}	d) 1.02×10^{-5}
618.	Which are used as secondary reference electrodes?		
	a) Calomel electrode		
	b) Ag/AgCl electrode		

c) Hg/Hg₂Cl₂ – KCl electrode

Gplus Education

d) All of the above			
619. The amount of electricity required	l to produce one mo	ole of copper from copper :	sulphate solution will be
a) 1 F b) 2.33	F	c) 2 F	d) 1.33 F
620. The weight ratio of Al and Ag depo	sited using the san	ne quantity of current is :	
a) 9:108 b) 2:12	2	c) 108:9	d) 3:8
621. When same electric current is pass	sed through the sol	ution of different electroly	tes in series the amounts of
the element deposited on the elect	-		
a) At.no. b) At. w		c) Sp. gravity	d) Eq. wt.
622. The metal used to recover copper			, 1
a) Fe b) He		c) Na	d) Ag
623. If the half-cell reaction $A + e \rightarrow A$	1 [–] has a large negat		, ,
		c) A is readily reduced	
624. Same amount of electric current is		-	-
obtained in the first case, the amou			_
a) 224 cm ³ b) 1.000		c) 112 cm ³	d) 22400 cm ³
625. The standard emf of Agalvanic cell	-	•	
equilibrium constant of the reaction	-	_ 15 10 and 0	0 50 01 2 50 1 40 2 0
(Given, $F = 96500 \text{ C mol}^{-1}$, $R =$)	
a) 2.0×10^{11} b) 4.0×10^{11}		c) 1.0×10^2	d) 1.0×10^{10}
626. The correct order of chemical reaches			
		c) $K > Zn > Mg > Cu$	d) Cu > Zn > Mg > K
627. Calculate using appropriate mo			,
electrolytes listed below at infinite			ie molai conductances of
Electr KCl NaCl HCl NaOAc		25 G.	
ode			
S Cm ² 149.9 126.5 426.2 91.0 mol ⁻ 1	145.0		
a) 51.2 b) 552.	7	c) 390.7	d) 217.5
628. The E° for half-cell Fe/Fe ²⁺ and Co			3
			d) Cu ²⁺ oxidises Fe ²⁺
629. The same amount of electricity wa		-	-
1.8 g of Al were liberated in one ce			
a) 4.6 g b) 2.3 g		c) 6.4 g	d) 3.2 g
630. 1 mole of Al is deposited by X of			
number of mole of silver deposited	a by A coulomb of e	•	
a) 3 b) 4	1. 1	c) 2	d) 1
631. The platinum electrodes were imm			-
through the solution. After some t			ate disappeared with
evolution of gas at the electrode.			D 0 1 1
a) Copper sulphate b) Copp	er hydroxide	c) Platinum sulphate	d) Sulphuric acid